论文标题

对比性跨模式预训练:小样本医学成像的一般策略

Contrastive Cross-Modal Pre-Training: A General Strategy for Small Sample Medical Imaging

论文作者

Liang, Gongbo, Greenwell, Connor, Zhang, Yu, Wang, Xiaoqin, Kavuluru, Ramakanth, Jacobs, Nathan

论文摘要

在给定医学成像任务的训练神经网络中的一个关键挑战通常是获得足够数量的手动标记示例的困难。相比之下,通常在病历中很容易获得的文本成像报告包含专家写的丰富但非结构化的解释,这是标准临床实践的一部分。我们建议使用这些文本报告作为弱监督的一种形式,以提高神经网络的图像解释性能,而无需手动标记的示例。我们使用图像文本匹配任务来训练功能提取器,然后在传输学习设置中对其进行调整,以使用小标记的数据集进行监督任务。最终结果是一个神经网络,该神经网络会自动解释图像,而无需在推理过程中进行文本报告。该方法可以应用于任何容易获得文本图像对的任务。我们在三个分类任务上评估了我们的方法,并找到一致的性能改进,将标记数据的需求减少了67%-98%。

A key challenge in training neural networks for a given medical imaging task is often the difficulty of obtaining a sufficient number of manually labeled examples. In contrast, textual imaging reports, which are often readily available in medical records, contain rich but unstructured interpretations written by experts as part of standard clinical practice. We propose using these textual reports as a form of weak supervision to improve the image interpretation performance of a neural network without requiring additional manually labeled examples. We use an image-text matching task to train a feature extractor and then fine-tune it in a transfer learning setting for a supervised task using a small labeled dataset. The end result is a neural network that automatically interprets imagery without requiring textual reports during inference. This approach can be applied to any task for which text-image pairs are readily available. We evaluate our method on three classification tasks and find consistent performance improvements, reducing the need for labeled data by 67%-98%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源