论文标题
知识增强,类型约束和语法引导的问题生成知识基础
Knowledge-enriched, Type-constrained and Grammar-guided Question Generation over Knowledge Bases
论文作者
论文摘要
关于知识库(KBQG)的问题产生旨在产生有关子图的自然语言问题,即一组(连接的)三元组。当前的两个主要挑战仍然面临着基于编码器的方法的作物,尤其是在小型子图上:(1)由于子图中包含有限的信息而引起的低多样性和流利性较差,以及(2)由于解码器遗忘了答案实体的语义学而引起的语义漂移。我们提出了一种创新的知识增强,类型约束和语法引导的KBQG模型,以应对上述挑战。在我们的模型中,编码器配备了来自KB的辅助信息,并且解码器在QG期间被单词类型限制。具体而言,实体域和描述以及关系层次结构信息被认为是构建问题上下文的,而有条件的复制机制被合并以根据当前单词类型调节问题语义。此外,具有语法相似性的新型奖励功能旨在通过增强学习来提高生成性丰富和句法正确性。广泛的实验表明,我们所提出的模型在两个广泛使用的基准数据集简单问题和路径问题上的差距高优于现有方法。
Question generation over knowledge bases (KBQG) aims at generating natural-language questions about a subgraph, i.e. a set of (connected) triples. Two main challenges still face the current crop of encoder-decoder-based methods, especially on small subgraphs: (1) low diversity and poor fluency due to the limited information contained in the subgraphs, and (2) semantic drift due to the decoder's oblivion of the semantics of the answer entity. We propose an innovative knowledge-enriched, type-constrained and grammar-guided KBQG model, named KTG, to addresses the above challenges. In our model, the encoder is equipped with auxiliary information from the KB, and the decoder is constrained with word types during QG. Specifically, entity domain and description, as well as relation hierarchy information are considered to construct question contexts, while a conditional copy mechanism is incorporated to modulate question semantics according to current word types. Besides, a novel reward function featuring grammatical similarity is designed to improve both generative richness and syntactic correctness via reinforcement learning. Extensive experiments show that our proposed model outperforms existing methods by a significant margin on two widely-used benchmark datasets SimpleQuestion and PathQuestion.