论文标题

量子增强条形码解码和模式识别

Quantum-enhanced barcode decoding and pattern recognition

论文作者

Banchi, Leonardo, Zhuang, Quntao, Pirandola, Stefano

论文摘要

量子假设检验是量子信息理论中最基本的问题之一,在量子传感等领域中具有至关重要的影响,在量子传感等领域中,它已被用于在一系列二元光子方案中证明量子优势,例如,用于目标检测或记忆细胞读数。在这项工作中,我们将这种理论模型推广到条形码解码和模式识别的多目标设置。我们首先将数字图像定义为像素的数组或网格,每个像素对应于量子通道的集合。我们将每个像素专用于黑色和白色字母,我们自然定义了条形码的光学模型。在这种情况下,我们表明使用量子纠缠来源,结合适当的测量和数据处理,在条形码数据解码和黑白模式的分类方面极大地超过了经典的相干状态策略。此外,引入相关的边界,我们表明,只要图像与不同类别的图像之间的最小锤距足够大,模式识别的问题比条形码解码要简单得多。最后,我们从理论上说明了使用量子传感器与最近的邻居分类器,一种监督学习算法进行模式识别的优势,并数值验证了手写数字分类的这一预测。

Quantum hypothesis testing is one of the most fundamental problems in quantum information theory, with crucial implications in areas like quantum sensing, where it has been used to prove quantum advantage in a series of binary photonic protocols, e.g., for target detection or memory cell readout. In this work, we generalize this theoretical model to the multi-partite setting of barcode decoding and pattern recognition. We start by defining a digital image as an array or grid of pixels, each pixel corresponding to an ensemble of quantum channels. Specializing each pixel to a black and white alphabet, we naturally define an optical model of barcode. In this scenario, we show that the use of quantum entangled sources, combined with suitable measurements and data processing, greatly outperforms classical coherent-state strategies for the tasks of barcode data decoding and classification of black and white patterns. Moreover, introducing relevant bounds, we show that the problem of pattern recognition is significantly simpler than barcode decoding, as long as the minimum Hamming distance between images from different classes is large enough. Finally, we theoretically demonstrate the advantage of using quantum sensors for pattern recognition with the nearest neighbor classifier, a supervised learning algorithm, and numerically verify this prediction for handwritten digit classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源