论文标题
通货膨胀引力波一致地$ d \至4 $ EINSTEIN-GAUSS-BONNET重力
Inflationary gravitational waves in consistent $D\to 4$ Einstein-Gauss-Bonnet gravity
论文作者
论文摘要
我们研究了一致的$ d \ to4 $ einstein-einstein-gauss-bonnet重力的慢速单场通胀,该重力最近在\ cite {aoki:2020lig}中提出。除了标准的吸引力制度外,我们还找到了一种新的吸引者制度,我们将其称为高斯吸引子,因为主要的贡献来自高斯式术语。在该吸引子解决方案周围,我们发现了曲率扰动和重力波(GWS)的功率谱和光谱倾斜度,以及可观察到的数量之间的模型无关的一致性关系。高斯式术语为GWS分散关系提供了一个非线性$ k^4 $项,该订单与Horizon交叉时在高斯河网吸引子周围交叉时具有相同的订单。因此,高斯 - 邦网吸引力机制为原始GWS提供了一种新方案,可以通过观测来测试。最后,我们在此模型中研究了GWS的非高卢斯语,并估算非线性参数$ f^{s_1s_2s_3} _ {\ rm nl,\; sq} $和$ f^{s_1s_2s_2s_2s_2s_2s_2s_3} _ {分别在挤压极限和等边形处分别在等边类型模板。对于螺旋,$(+++)$和$( - )$,$ f^{s_1s_2s_3} _ {\ rm nl,\; sq} $更大,而$ f^{s_1s_2s_3} _ {\ rm nl,\ eq; eq; eq} $ for Helicities $($()
We study the slow-roll single field inflation in the context of the consistent $D\to4$ Einstein-Gauss-Bonnet gravity that was recently proposed in \cite{Aoki:2020lig}. In addition to the standard attractor regime, we find a new attractor regime which we call the Gauss-Bonnet attractor as the dominant contribution comes from the Gauss-Bonnet term. Around this attractor solution, we find power spectra and spectral tilts for the curvature perturbations and gravitational waves (GWs) and also a model-independent consistency relation among observable quantities. The Gauss-Bonnet term provides a nonlinear $k^4$ term to the GWs dispersion relation which has the same order as the standard linear $k^2$ term at the time of horizon crossing around the Gauss-Bonnet attractor. The Gauss-Bonnet attractor regime thus provides a new scenario for the primordial GWs which can be tested by observations. Finally, we study non-Gaussianity of GWs in this model and estimate the nonlinear parameters $f^{s_1s_2s_3}_{\rm NL,\;sq}$ and $f^{s_1s_2s_3}_{\rm NL,\;eq}$ by fitting the computed GWs bispectra with the local-type and equilateral-type templates respectively at the squeezed limit and at the equilateral shape. For helicities $(+++)$ and $( -- )$, $f^{s_1s_2s_3}_{\rm NL,\;sq}$ is larger while $f^{s_1s_2s_3}_{\rm NL,\;eq}$ is larger for helicities $(++-)$ and $(--+)$.