论文标题

信息驱动的自适应感测,基于深度强化学习

Information-Driven Adaptive Sensing Based on Deep Reinforcement Learning

论文作者

Murad, Abdulmajid, Kraemer, Frank Alexander, Bach, Kerstin, Taylor, Gavin

论文摘要

为了更好地利用对资源受限的物联网设备的传感政策的深入增强学习,我们根据Fisher信息价值介绍和研究一种新颖的奖励功能。该奖励功能使IoT传感器设备能够在其他无法预测的时刻学习将可用的能量用于测量,同时在测量结果几乎没有新信息时节省能量。这是一种高度通用的方法,它允许在没有大量人类设计工作或超级参数调整的情况下进行广泛的用例。我们在工作场所噪声监测的情况下说明了这种方法,结果表明,学到的行为表现优于统一的采样策略,并且接近近乎最佳的甲骨文解决方案。

In order to make better use of deep reinforcement learning in the creation of sensing policies for resource-constrained IoT devices, we present and study a novel reward function based on the Fisher information value. This reward function enables IoT sensor devices to learn to spend available energy on measurements at otherwise unpredictable moments, while conserving energy at times when measurements would provide little new information. This is a highly general approach, which allows for a wide range of use cases without significant human design effort or hyper-parameter tuning. We illustrate the approach in a scenario of workplace noise monitoring, where results show that the learned behavior outperforms a uniform sampling strategy and comes close to a near-optimal oracle solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源