论文标题

关于限制在线拉姆齐的注释

A Note on Restricted Online Ramsey Numbers of Matchings

论文作者

Dvořák, Vojtěch

论文摘要

受限的在线拉姆齐号码是由Conlon,Fox,Grinshpun和He引入的。在最近的一篇论文中,Briggs和Cox研究了受限制的在线Ramsey比赛数量,并确定了他们的一般上限。他们证明,对于$ n = 3r-1 = r_2(r k_2)$,我们有$ \ tilde {r} _ {2} _ {2}(r k_2; n)\ leq n-1 $,并问这是否很紧。在此简短说明中,我们为这些拉姆齐号提供了一般的下限。作为推论,我们回答了Briggs和Cox的这个问题,并确认对于$ n = 3r-1 $,我们有$ \ tilde {r} _ {2}(r k_2; n)= n-1 $。我们还表明,对于$ n'= 4R-2 = r_3(r k_2)$,我们有$ \ tilde {r} _ {3}(r k_2; n')= 5r-4 $。

The restricted online Ramsey numbers were introduced by Conlon, Fox, Grinshpun and He in 2019. In a recent paper, Briggs and Cox studied the restricted online Ramsey numbers of matchings and determined a general upper bound for them. They proved that for $n=3r-1=R_2(r K_2)$ we have $\tilde{R}_{2}(r K_2;n) \leq n-1$ and asked whether this was tight. In this short note, we provide a general lower bound for these Ramsey numbers. As a corollary, we answer this question of Briggs and Cox, and confirm that for $n=3r-1$ we have $\tilde{R}_{2}(r K_2;n) = n-1$. We also show that for $n'=4r-2=R_3(r K_2)$ we have $\tilde{R}_{3}(r K_2;n') = 5r-4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源