论文标题

Deepstreet:深度学习有能力的城市街道网络生成模块

DeepStreet: A deep learning powered urban street network generation module

论文作者

Fang, Zhou, Yang, Tianren, Jin, Ying

论文摘要

在经历了前所未有的城市化浪潮的国家,需要快速,高质量的城市街道设计。我们的研究提出了一种新型的深度学习动力方法,Deepstreet(DS),用于自动街道网络的生成,可应用于具有本地特征的城市街道设计。 DS是由卷积神经网络(CNN)驱动的,该卷积神经网络能够根据附近的附近插值。具体而言,首先对CNN进行了培训,以检测,识别和捕获本地功能以及从OpenStreetMap中采购的现有街道网络的模式。借助训练有素的CNN,DS能够预测街道网络在其周围街道网络中的预定义区域内的未来扩展模式。为了测试DS的性能,我们将其应用于巴塞罗那市及周边地区及其周围的区域,这是城市和运输规划领域的众所周知的例子,具有标志性的网格,例如中心的街道网络,以及不规则的道路对齐。结果表明,DS可以(1)在巴塞罗那检测和自我集群不同类型的复杂街道模式; (2)预测烤架和不规则的街道和道路网络。事实证明,DS具有巨大的潜力,可以使设计师有效地设计城市街道网络,从而很好地维持了现有和新生成的城市街头网络的一致性。此外,生成的网络可以作为指导当地计划制定的基准,尤其是在快速发展的城市中。

In countries experiencing unprecedented waves of urbanization, there is a need for rapid and high quality urban street design. Our study presents a novel deep learning powered approach, DeepStreet (DS), for automatic street network generation that can be applied to the urban street design with local characteristics. DS is driven by a Convolutional Neural Network (CNN) that enables the interpolation of streets based on the areas of immediate vicinity. Specifically, the CNN is firstly trained to detect, recognize and capture the local features as well as the patterns of the existing street network sourced from the OpenStreetMap. With the trained CNN, DS is able to predict street networks' future expansion patterns within the predefined region conditioned on its surrounding street networks. To test the performance of DS, we apply it to an area in and around the Eixample area in the City of Barcelona, a well known example in the fields of urban and transport planning with iconic grid like street networks in the centre and irregular road alignments farther afield. The results show that DS can (1) detect and self cluster different types of complex street patterns in Barcelona; (2) predict both gridiron and irregular street and road networks. DS proves to have a great potential as a novel tool for designers to efficiently design the urban street network that well maintains the consistency across the existing and newly generated urban street network. Furthermore, the generated networks can serve as a benchmark to guide the local plan-making especially in rapidly developing cities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源