论文标题
最大的子集没有任意集中的算术进展
Maximal subsets free of arithmetic progressions in arbitrary sets
论文作者
论文摘要
我们考虑确定子集的最大基数的问题,该子集包含一组尺寸$ n $中的长度$ k $的算术进度。事实证明,从某种意义上说,考虑间隔$ [1,\ dots,n] $是足够的。这项研究继续了Komlós,Sulyok和Szemerédi的工作。
We consider the problem of determining the maximum cardinality of a subset containing no arithmetic progressions of length $k$ in a given set of size $n$. It is proved that it is sufficient, in a certain sense, to consider the interval $[1,\dots, n]$. The study continues the work of Komlós, Sulyok, and Szemerédi.