论文标题
在模拟中评估运动学和牛仔裤平衡的星系动力质量
Evaluating Galaxy Dynamical Masses From Kinematics and Jeans Equilibrium in Simulations
论文作者
论文摘要
我们提供了使用分析考虑因素和$ z = 1-5 $的宇宙变焦模拟的VELA套件来评估星星或气体的动力学质量($ m _ {\ rm dyn} $)的动态质量(\ rm dyn} $)。我们发现,牛仔裤或静水平衡对于$ m_ \ star \!\ sim \! 10^{9.5} m_ \ odot $ out to $ 5 $有效radii($ r_e $)。当旋转速度的两个测量值$ v_ϕ $和径向速度分散$σ_r$都可用时,动态质量$ m _ {\ rm dyn} \!\ simeq \! g^{ - 1} v_c^2 r $可以从牛仔裤方程中评估$ v_c^2 = v_ϕ^2 +ασ_r^2 $假设圆柱形对称性和常数,等同于$σ_r$。对于球体,$α$与Sérsic索引$ n $和$α\ simeq 2.5 $倒数成反比,用于模拟星系$ r_e $。在模拟中,自我磨练的指数盘的预测是$α= 3.36(r_e)$,在模拟中无效,其中主要的球体从$α\!\ simeq \! 1 $ at $ r_e $ to $ 5r_e $。由于$σ_r(r)$梯度,恒星$α$的校正大致平衡了非球电位的效果,而各向异性的效果可以忽略不计。如果只有有效的投影速度分散$σ_l$可用,则可以将动态质量评估为$ m _ {\ rm dyn} = k g^{ - 1} r_eσ_l^2 $,其中病毒因子$ k $从$α$中衍生而来,给定$α$。我们发现,只有在倾斜度和紧凑型和厚的圆盘上平均时,标准值$ k = 5 $仅在边缘和面向预测之间的4.5到10的范围以上。
We provide prescriptions to evaluate the dynamical mass ($M_{\rm dyn}$) of galaxies from kinematic measurements of stars or gas using analytic considerations and the VELA suite of cosmological zoom-in simulations at $z=1-5$. We find that Jeans or hydrostatic equilibrium is approximately valid for galaxies of stellar masses above $M_\star \!\sim\! 10^{9.5}M_\odot$ out to $5$ effective radii ($R_e$). When both measurements of the rotation velocity $v_ϕ$ and of the radial velocity dispersion $σ_r$ are available, the dynamical mass $M_{\rm dyn} \!\simeq\! G^{-1} V_c^2 r$ can be evaluated from the Jeans equation $V_c^2= v_ϕ^2 + ασ_r^2$ assuming cylindrical symmetry and a constant, isotropic $σ_r$. For spheroids, $α$ is inversely proportional to the Sérsic index $n$ and $α\simeq 2.5$ within $R_e$ for the simulated galaxies. The prediction for a self-gravitating exponential disc, $α= 3.36(r/R_e)$, is invalid in the simulations, where the dominant spheroid causes a weaker gradient from $α\!\simeq\! 1$ at $R_e$ to 4 at $5R_e$. The correction in $α$ for the stars due to the gradient in $σ_r(r)$ is roughly balanced by the effect of the aspherical potential, while the effect of anisotropy is negligible. When only the effective projected velocity dispersion $σ_l$ is available, the dynamical mass can be evaluated as $M_{\rm dyn} = K G^{-1} R_e σ_l^2$, where the virial factor $K$ is derived from $α$ given the inclination and $v_ϕ/σ_r$. We find that the standard value $K=5$ is approximately valid only when averaged over inclinations and for compact and thick discs, as it ranges from 4.5 to above 10 between edge-on and face-on projections.