论文标题

面向方面的细粒度提取的网格标记方案

Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction

论文作者

Wu, Zhen, Ying, Chengcan, Zhao, Fei, Fan, Zhifang, Dai, Xinyu, Xia, Rui

论文摘要

面向方面的细粒意见提取(AFOE)旨在以意见对的形式从审查中提取方面术语和意见术语,或者还提取方面术语的情感极性以形成意见三重态。由于包含多个意见因素,因此完整的AFOE任务通常分为多个子任务并在管道中实现。但是,管道方法很容易遭受现实情况下的错误传播和不便。为此,我们提出了一种新颖的标记方案,网格标记方案(GTS),以端到端的方式解决AFOE任务,仅通过一个统一的网格标记任务。此外,我们针对GTS设计了有效的推论策略,以利用不同意见因素之间的相互指示,以进行更准确的提取。为了验证GTS的可行性和兼容性,我们基于CNN,Bilstm和Bert分别实施了三个不同的GTS模型,并对面向方面的意见对提取和意见三重式提取数据集进行了实验。广泛的实验结果表明,GTS模型的表现明显优于强质基准并实现最新性能。

Aspect-oriented Fine-grained Opinion Extraction (AFOE) aims at extracting aspect terms and opinion terms from review in the form of opinion pairs or additionally extracting sentiment polarity of aspect term to form opinion triplet. Because of containing several opinion factors, the complete AFOE task is usually divided into multiple subtasks and achieved in the pipeline. However, pipeline approaches easily suffer from error propagation and inconvenience in real-world scenarios. To this end, we propose a novel tagging scheme, Grid Tagging Scheme (GTS), to address the AFOE task in an end-to-end fashion only with one unified grid tagging task. Additionally, we design an effective inference strategy on GTS to exploit mutual indication between different opinion factors for more accurate extractions. To validate the feasibility and compatibility of GTS, we implement three different GTS models respectively based on CNN, BiLSTM, and BERT, and conduct experiments on the aspect-oriented opinion pair extraction and opinion triplet extraction datasets. Extensive experimental results indicate that GTS models outperform strong baselines significantly and achieve state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源