论文标题
四维扩展标量调整 - 高斯河网理论中新型的精确磁性黑洞溶液
A novel exact magnetic black hole solution in four-dimensional extended scalar-tensor-Gauss-Bonnet theory
论文作者
论文摘要
在这项工作中,提出了第一个精确的渐近静态静态和球形对称的黑洞解决方案,$(3+1)$ - 尺寸ESTGB,具有非线性电动力学模型 - 将其在弱场限制中降低到麦克斯韦的理论,并满足弱能量条件 - 作为源。该溶液具有非零的磁电荷和标量头发,事实证明这取决于磁电荷。它的特征是ADM Mass $ M $和磁性电荷$ Q $。根据这些参数的范围,该解决方案描述了具有不同结构的黑洞。在$ M \ geq0 $和$ Q \ geq0 $的情况下,它具有Schwarzschild解决方案的许多特征。对于$ m> 0 $和$ q <0 $,它类似于Reissner-NordströmMetric。在$ m = 0 $的情况下,它代表了一个纯磁性黑洞。
In this work the first exact asymptotically flat static and spherically symmetric black hole solution for $(3+1)$-dimensional ESTGB is presented, with a model of nonlinear electrodynamics -- that reduces to Maxwell's theory in the weak field limit and satisfies the weak energy condition -- as a source. The solution has a nonzero magnetic charge, and scalar hair, which turns out to be dependent of the magnetic charge. It is characterized by the ADM mass $m$ and the magnetic charge $q$. Depending on the range of these parameters, the solution describes black holes with different structure. In the case $m\geq0$ and $q\geq0$, it shares many of the characteristics of the Schwarzschild solution. For $m>0$ and $q<0$, it is akin to the Reissner-Nordström metric. In the case $m=0$, it represents a purely magnetic black hole.