论文标题
用较弱的注释者进行共同分类和分割的深入积极学习
Deep Active Learning for Joint Classification & Segmentation with Weak Annotator
论文作者
论文摘要
CNN可视化和解释方法(例如类激活图(CAM))通常用于突出显示与类预测相关的图像区域。这些模型允许同时对图像进行分类并提取依赖类的显着图,而无需昂贵的像素级注释。但是,它们通常会产生高阳性速率的分割,因此,在处理有挑战性的图像时,正如组织学中遇到的那样,更粗糙的可视化率。为了减轻此问题,我们提出了一个主动学习(AL)框架,该框架在培训过程中逐步整合了像素级注释。给定带有全球图像级标签的培训数据,我们深度弱化的学习模型共同执行监督的图像级分类和主动学习,以进行分割,并通过Oracle进行像素注释。与专注于样品选择的标准AL方法不同,我们还通过伪分割(即,在像素级别的自学学习)利用大量未标记的图像,并将它们与训练过程中的甲骨文宣布的样本集成在一起。我们报告了两个具有挑战性的基准测试的广泛实验 - 高分辨率医学图像(结肠癌的组织学GLAS数据)和自然图像(鸟类的Cub-200-2011)。我们的结果表明,通过简单地使用随机样本选择,使用相同的Oracle-Supervision预算,所提出的方法可以显着胜过最先进的凸轮和AL方法。我们的代码公开可用。
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions. These models allow to simultaneously classify images and extract class-dependent saliency maps, without the need for costly pixel-level annotations. However, they typically yield segmentations with high false-positive rates and, therefore, coarse visualisations, more so when processing challenging images, as encountered in histology. To mitigate this issue, we propose an active learning (AL) framework, which progressively integrates pixel-level annotations during training. Given training data with global image-level labels, our deep weakly-supervised learning model jointly performs supervised image-level classification and active learning for segmentation, integrating pixel annotations by an oracle. Unlike standard AL methods that focus on sample selection, we also leverage large numbers of unlabeled images via pseudo-segmentations (i.e., self-learning at the pixel level), and integrate them with the oracle-annotated samples during training. We report extensive experiments over two challenging benchmarks -- high-resolution medical images (histology GlaS data for colon cancer) and natural images (CUB-200-2011 for bird species). Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of the-art CAMs and AL methods, with an identical oracle-supervision budget. Our code is publicly available.