论文标题
相对于圆柱半明星的随机整合
Stochastic integration with respect to cylindrical semimartingales
论文作者
论文摘要
在这项工作中,我们介绍了一种随机整合的理论,相对于在局部凸空间$φ$上定义的一般圆柱形半明星。我们的随机积分的构建基于拓扑矢量空间的张量产物的理论和现实价值的半明星的良好集成商的特性。在$φ$是一个完整的,桶装的核空间的情况下,该理论进一步发展,我们可以将整个集成类别的完整描述为$φ$ - 值在本地界限和弱预测的过程中。证明了随机积分的其他几种特性,包括黎曼表示,零件公式和随机fubini定理的随机整合。然后将我们的理论应用于提供足够和必要的条件,以实现解决方案的存在和唯一性,以实现由半明星噪声驱动的线性随机进化方程,以$φ$的强dual $φ'$ $φ'$。在本文的最后一部分中,我们将我们的理论应用于一系列实价的半明星序列来定义随机积分。
In this work we introduce a theory of stochastic integration with respect to general cylindrical semimartingales defined on a locally convex space $Φ$. Our construction of the stochastic integral is based on the theory of tensor products of topological vector spaces and the property of good integrators of real-valued semimartingales. This theory is further developed in the case where $Φ$ is a complete, barrelled, nuclear space, where we obtain a complete description of the class of integrands as $Φ$-valued locally bounded and weakly predictable processes. Several other properties of the stochastic integral are proven, including a Riemann representation, a stochastic integration by parts formula and a stochastic Fubini theorem. Our theory is then applied to provide sufficient and necessary conditions for existence and uniqueness of solutions to linear stochastic evolution equations driven by semimartingale noise taking values in the strong dual $Φ'$ of $Φ$. In the last part of this article we apply our theory to define stochastic integrals with respect to a sequence of real-valued semimartingales.