论文标题
不均匀性引起了与远程相互作用的Ising链中绝热性的快捷方式
Inhomogeneity induced shortcut to adiabaticity in Ising chains with long-range interactions
论文作者
论文摘要
在淬火时间$τ_q$中驾驶同质系统跨量子相过渡,在波长上产生的激发时间比kibble-zurek(kz)长度$ \ hat配给$ \hatξ\ propto proptoproptoτ_q^{ν/(1+zν)$在kz time time window $ \ hat t \ hat t \ propto propto propto propto propto propto propto propt $ z $ z quent $和$ν$是关键指数。用局部时间依赖性不均匀性设计的淬灭可以在频谱中引入差距。对于各种具有短距离相互作用的设置,如果不孔子前端的空间速度在特征性的Kz速度$ \ hat v \ propto \ hatpoto \hatξ/\ hat t $下方,它们已被证明会抑制激发。具有远距离相互作用的类似Ising的模型不能具有声音范围,可以在整个系统中立即传播信息。通常,这应该暗示不构成过渡将使动力学绝热无论前速度如何。但是,我们证明,仅当不均匀的前部移动慢于特征性的跨界速度$ \ tilde v \ tilde v \ proptoθ^{((z-1)ν/(1+νν)} $时,我们才能获得绝热的过渡,没有缺陷。模型的这种交叉速度和绝热性的存在是由不均匀性打开的准粒子光谱中能量差距的结果。可以在具有远距离相互作用的系统中采用这种效果来进行有效的绝热量子状态制备。
Driving a homogeneous system across a quantum phase transition in a quench-time $τ_Q$ generates excitations on wavelengths longer than the Kibble-Zurek (KZ) length $\hatξ\proptoτ_Q^{ν/(1+zν)}$ within the KZ time window $\hat t\proptoτ_Q^{zν/(1+zν)}$, where $z$ and $ν$ are the critical exponents. Quenches designed with local time-dependent inhomogeneity can introduce a gap in the spectrum. For a variety of setups with short-range interactions, they have been shown to suppress excitations if the spatial velocity of the inhomogenous front is below the characteristic KZ velocity $\hat v \propto \hatξ/\hat t$. Ising-like models with long-range interactions can have no sonic horizon, spreading information instantaneously across the system. Usually, this should imply that inhomogenous transitions will render the dynamics adiabatic regardless of the front velocity. However, we show that we get an adiabatic transition with no defects only when the inhomogeneous front moves slower than a characteristic crossover velocity $\tilde v \propto θ^{(z-1)ν/(1+ν)}$, where $θ$ is the slope of the inhomogeneous front at the critical point. The existence of this crossover velocity and adiabaticity of the model is a consequence of the energy gap in the quasiparticle spectrum that is opened by the inhomogeneity. This effect can be employed for efficient adiabatic quantum state preparation in systems with long-range interactions.