论文标题

黑洞时空中的及时表面附近的差异对称性

Diffeomorphism symmetries near a timelike surface in black hole spacetime

论文作者

Maitra, Mousumi, Maity, Debaprasad, Majhi, Bibhas Ranjan

论文摘要

最近,时空渐近区域中重力和仪表场的对称性在其低能量散射现象中起着至关重要的作用。此外,对于黑洞时空,已经观察到近地平线对称性在理解地平线热力学行为的潜在自由度中起可能作用。遵循类似的想法,在本文中,我们分析了位于任何任意径向位置的时态表面附近的对称和相关代数,并嵌入黑洞时空。在本文中,我们考虑了Schwarzschild和Kerr Black Hole SpaceTimes。在这些空间中,具有恒定径向坐标(在地平线之外)的高空曲面家族本质上是及时的,并将空间分为两个不同的区域。事实证明,对称代数使人联想到渐近无效无穷大的Bondi-Metzner-Sach(BMS)对称性。

Recently symmetries of gravity and gauge fields in the asymptotic regions of spacetime have been shown to play vital role in their low energy scattering phenomena. Further, for the black hole spacetime, near horizon symmetry has been observed to play possible role in understanding the underlying degrees of freedom for thermodynamic behaviour of horizon. Following the similar idea, in this paper, we analyzed the symmetry and associated algebra near a timelike surface which is situated at any arbitrary radial position and is embedded in black hole spacetime. In this paper we considered both Schwarzschild and Kerr black hole spacetimes. The families of hypersurfaces with constant radial coordinate (outside the horizon) in these spacetimes is timelike in nature and divide the space into two distinct regions. The symmetry algebra turned out to be reminiscent of Bondi-Metzner-Sach (BMS) symmetry, found in the asymptotic null infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源