论文标题

SL(n)的L-actets内部的区别

Distinction inside L-packets of SL(n)

论文作者

Anandavardhanan, U. K., Matringe, Nadir

论文摘要

If $E/F$ is a quadratic extension $p$-adic fields, we first prove that the $\mathrm{SL}_n(F)$-distinguished representations inside a distinguished unitary L-packet of $\mathrm{SL}_n(E)$ are precisely those admitting a degenerate Whittaker model with respect to a degenerate character of $N(E)/N(F)$.然后,我们建立了这个结果的全球类似物。为此,令$ e/f $为数字字段的二次扩展,让$π$为$ \ mathrm {sl} _n(\ Mathbb {a} _f)$ - 划分的Square Square-square-square-Antegrable Antegrable Automorphic Automorphic Automorphic Automorphic表示$ \ Mathrm {SL} _N(SL} _n(\ Mathbbbbbbbbbbbbbb {\ Mathbb {a} a} =)令$(σ,d)$是与$π$相关的唯一对,其中$σ$是$ \ mathrm {gl} _r(\ Mathbb {a} _e)$的cuspidal表示,与$ n = dr $。使用一个不断增长的论点,我们证明了$π$的l-packet的一个要素相对于$ \ mathrm {sl} _n(\ Mathbb {a} _f)$,并且仅当它具有变性的惠特克模型的模型时,即$ r^d:=(r^d:=(r^dementere whittaker)模型$ n_n(\ mathbb {a} _e)$,在$ n_n(e+\ mathbb {a} _f)$上是微不足道的,其中$ n_n $是$ \ m mathrm {sl} _n $ $ n_n $的$ n_n $。作为第一个应用程序,在假设$ e/f $在infinity和$ r $上划分的假设是奇怪的,我们为$ \ mathrm {sl} _n(\ Mathbb {a} _f)$ - 在$π$的L-packet内部建立了local-lobal原理。作为第二个应用程序,我们构建了杰出的cuspidal自动形态表示的示例$π$ of $ \ mathrm {sl} _n(\ Mathbb {a} _e)$ $ \ mathrm {sl} _n(\ Mathbb {a} _e)$,使其L-packets不包含任何明显的表示。

If $E/F$ is a quadratic extension $p$-adic fields, we first prove that the $\mathrm{SL}_n(F)$-distinguished representations inside a distinguished unitary L-packet of $\mathrm{SL}_n(E)$ are precisely those admitting a degenerate Whittaker model with respect to a degenerate character of $N(E)/N(F)$. Then we establish a global analogue of this result. For this, let $E/F$ be a quadratic extension of number fields and let $π$ be an $\mathrm{SL}_n(\mathbb{A}_F)$-distinguished square integrable automorphic representation of $\mathrm{SL}_n(\mathbb{A}_E)$. Let $(σ,d)$ be the unique pair associated to $π$, where $σ$ is a cuspidal representation of $\mathrm{GL}_r(\mathbb{A}_E)$ with $n=dr$. Using an unfolding argument, we prove that an element of the L-packet of $π$ is distinguished with respect to $\mathrm{SL}_n(\mathbb{A}_F)$ if and only if it has a degenerate Whittaker model for a degenerate character $ψ$ of type $r^d:=(r,\dots,r)$ of $N_n(\mathbb{A}_E)$ which is trivial on $N_n(E+\mathbb{A}_F)$, where $N_n$ is the group of unipotent upper triangular matrices of $\mathrm{SL}_n$. As a first application, under the assumptions that $E/F$ splits at infinity and $r$ is odd, we establish a local-global principle for $\mathrm{SL}_n(\mathbb{A}_F)$-distinction inside the L-packet of $π$. As a second application we construct examples of distinguished cuspidal automorphic representations $π$ of $\mathrm{SL}_n(\mathbb{A}_E)$ such that the period integral vanishes on some canonical copy of $π$, and of everywhere locally distinguished representations of $\mathrm{SL}_n(\mathbb{A}_E)$ such that their L-packets do not contain any distinguished representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源