论文标题

混合推荐系统中的神经表示:预测与正则化

Neural Representations in Hybrid Recommender Systems: Prediction versus Regularization

论文作者

Raziperchikolaei, Ramin, Li, Tianyu, Chung, Young-joo

论文摘要

基于自动编码器的混合推荐系统最近已经流行,因为它们能够通过重建各种信息源来学习用户和项目表示形式,包括用户对项目的反馈(例如评级)以及用户和项目(例如用户职业和项目的标题)的侧面信息。但是,现有系统仍然使用矩阵分解(MF)学到的表示形式来预测评级,同时使用由神经网络学到的表示形式作为正常化程序。在本文中,我们定义了预测(NRP)框架的神经表示形式,并将其应用于基于自动编码器的推荐系统。我们从理论上分析了我们的目标函数与以前的MF和基于自动编码器的方法的关系,并解释使用神经表示作为正常器意味着什么。我们还将NRP框架应用于直接的神经网络结构,该框架可以预测评分而无需重建用户和项目信息。我们对两个Movielens数据集和两个现实世界电子商务数据集进行了广泛的实验。结果证实,神经表示比正则化更好,并表明NRP框架与直接的神经网络结构相结合,在预测任务中优于最新方法,而训练时间和内存较小。

Autoencoder-based hybrid recommender systems have become popular recently because of their ability to learn user and item representations by reconstructing various information sources, including users' feedback on items (e.g., ratings) and side information of users and items (e.g., users' occupation and items' title). However, existing systems still use representations learned by matrix factorization (MF) to predict the rating, while using representations learned by neural networks as the regularizer. In this paper, we define the neural representation for prediction (NRP) framework and apply it to the autoencoder-based recommendation systems. We theoretically analyze how our objective function is related to the previous MF and autoencoder-based methods and explain what it means to use neural representations as the regularizer. We also apply the NRP framework to a direct neural network structure which predicts the ratings without reconstructing the user and item information. We conduct extensive experiments on two MovieLens datasets and two real-world e-commerce datasets. The results confirm that neural representations are better for prediction than regularization and show that the NRP framework, combined with the direct neural network structure, outperforms the state-of-the-art methods in the prediction task, with less training time and memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源