论文标题

使用图像分割和随机森林自动化血流相容性分析

Automation of Hemocompatibility Analysis Using Image Segmentation and a Random Forest

论文作者

Clauser, Johanna C., Maas, Judith, Arens, Jutta, Schmitz-Rode, Thomas, Steinseifer, Ulrich, Berkels, Benjamin

论文摘要

接触血液接触医疗设备的血液相容性仍然是生物医学工程的主要挑战之一,并在不可避免的新材料和改进的材料领域进行了研究。但是,当前的体外测试和分析方法仍缺乏标准化和可比性,这阻碍了材料设计的进步。例如,每个研究组都会手动或半手动对材料内部血小板的血小板分析进行手动或半手动进行。 作为迈向标准化的一步,本文提出了一种用于光学血小板计数和分析的自动化方法。为此,使用Zach对多相相分段常数Mumford-Shah模型进行荧光图像进行了分割。然后需要将所得的连接组件分类为血小板或没有血小板。因此,使用区域,周长和圆形的特征,将监督的随机森林应用于源自组件的矢量。随机森林的总体高精度和低错误率,可靠地取得了可靠的结果。这是由接收器操作员和预测回程曲线下的高区域支持的。 我们开发了一种新方法,用于对材料血流相容性测试的快速,独立和可重复的分析,因此,这是生物材料研究进展的独特而有力的工具。

The hemocompatibility of blood-contacting medical devices remains one of the major challenges in biomedical engineering and makes research in the field of new and improved materials inevitable. However, current in-vitro test and analysis methods are still lacking standardization and comparability, which impedes advances in material design. For example, the optical platelet analysis of material in-vitro hemocompatibility tests is carried out manually or semi-manually by each research group individually. As a step towards standardization, this paper proposes an automation approach for the optical platelet count and analysis. To this end, fluorescence images are segmented using Zach's convexification of the multiphase-phase piecewise constant Mumford--Shah model. The resulting connected components of the non-background segments then need to be classified as platelet or no platelet. Therefore, a supervised random forest is applied to feature vectors derived from the components using features like area, perimeter and circularity. With an overall high accuracy and low error rates, the random forest achieves reliable results. This is supported by high areas under the receiver-operator and the prediction-recall curve, respectively. We developed a new method for a fast, user-independent and reproducible analysis of material hemocompatibility tests, which is therefore a unique and powerful tool for advances in biomaterial research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源