论文标题
通过变异自动编码器的动态现象的随机嵌入
Stochastic embeddings of dynamical phenomena through variational autoencoders
论文作者
论文摘要
在观察到的变量数量的情况下,系统识别小于动态中的自由度是一个重要的挑战。在这项工作中,我们通过使用识别网络来提高相位空间重建过程中观察到的空间维度来解决此问题。相位空间被迫具有由随机微分方程(SDE)描述的大约马尔可夫动力学,也可以发现。为了从随机数据中启用强大的学习,我们使用贝叶斯范式并将先验放在漂移和扩散项上。为了处理学习后者的复杂性,引入了一组对真实后代的平均场变异近似,从而实现了有效的统计推断。最后,使用解码器网络来获得实验数据的合理重建。这种方法的主要优点是,所得模型在统计物理范式中是可以解释的。我们的验证表明,这种方法不仅恢复了类似于原始空间的状态空间,而且还可以合成新的时间序列捕获实验数据的主要属性。
System identification in scenarios where the observed number of variables is less than the degrees of freedom in the dynamics is an important challenge. In this work we tackle this problem by using a recognition network to increase the observed space dimensionality during the reconstruction of the phase space. The phase space is forced to have approximately Markovian dynamics described by a Stochastic Differential Equation (SDE), which is also to be discovered. To enable robust learning from stochastic data we use the Bayesian paradigm and place priors on the drift and diffusion terms. To handle the complexity of learning the posteriors, a set of mean field variational approximations to the true posteriors are introduced, enabling efficient statistical inference. Finally, a decoder network is used to obtain plausible reconstructions of the experimental data. The main advantage of this approach is that the resulting model is interpretable within the paradigm of statistical physics. Our validation shows that this approach not only recovers a state space that resembles the original one, but it is also able to synthetize new time series capturing the main properties of the experimental data.