论文标题

自动调整搜索空间以进行循环转换

Autotuning Search Space for Loop Transformations

论文作者

Kruse, Michael, Finkel, Hal, Wu, Xingfu

论文摘要

优化编译器的挑战之一是预测应用优化是否会提高其执行速度。程序员可以使用源代码中的Pragmas等优化指令覆盖编译器的获利能力。以自动调整形式的机器学习可以帮助用户为每个平台找到最佳的优化。 在本文中,我们提出了一个采用树形式的循环转换搜索空间,与通常使用向量空间表示循环优化配置的先前方法相比。我们实施了一个简单的自动渠,探索搜索空间并将其应用于选定的一组Poly -acch内核。虽然自动调节器能够表示循环转换的每一个可能的顺序及其关系,但结果促使使用更好的搜索策略,例如蒙特卡洛树搜索,以找到复杂的循环转换,例如多级瓷砖。

One of the challenges for optimizing compilers is to predict whether applying an optimization will improve its execution speed. Programmers may override the compiler's profitability heuristic using optimization directives such as pragmas in the source code. Machine learning in the form of autotuning can assist users in finding the best optimizations for each platform. In this paper we propose a loop transformation search space that takes the form of a tree, in contrast to previous approaches that usually use vector spaces to represent loop optimization configurations. We implemented a simple autotuner exploring the search space and applied it to a selected set of PolyBench kernels. While the autotuner is capable of representing every possible sequence of loop transformations and their relations, the results motivate the use of better search strategies such as Monte Carlo tree search to find sophisticated loop transformations such as multilevel tiling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源