论文标题
关于Beltrami系数的Carleson测量
On Carleson Measures of Beltrami Coefficients Being Compatible with Infinitely Generated Fuchsian Groups Related to Denjoy Domian
论文作者
论文摘要
令$ω$为Carleson-Denjoy域,而$ G $为其覆盖组。令$μ$为单位磁盘上的Beltrami系数,该系数与组$ g $兼容。在本文中,我们表明,如果$ \ frac {|μ|^{2}} {1- | z | |^{2}} dxdy $满足$ g $的dirichlet基本域的无限边界的carleson条件在单元磁盘上。我们还表明,上述属性不适合Denjoy域。
Let $Ω$ be a Carleson-Denjoy domain and $G$ be its covering group. Let $μ$ be a Beltrami coefficient on the unit disk which is compatible with the group $G$. In this paper we show that if $\frac{|μ|^{2}}{1-|z|^{2}}dxdy$ satisfies the Carleson condition on the infinite boundary of the Dirichlet fundamental domain of $G$, then $\frac{|μ|^{2}}{1-|z|^{2}}dxdy$ is a Carleson measure on the unit disk. We also show that the above property does not hold for Denjoy domain.