论文标题

使用卫星图像了解和促进可持续发展

Using satellite imagery to understand and promote sustainable development

论文作者

Burke, Marshall, Driscoll, Anne, Lobell, David B., Ermon, Stefano

论文摘要

对一系列可持续发展成果的准确测量是研究和政策的基本投入。我们综合了使用卫星图像来理解这些结果的日益增长的文献,重点是将图像与机器学习结合在一起。我们量化了与关键人类相关结果以及卫星图像的不断增长的丰度和分辨率(空间,时间和光谱)的稀少。然后,我们在稀缺和嘈杂的训练数据的背景下回顾了最近的机器学习方法来建造模型,并强调了这种噪声通常会导致对模型预测性能的错误评估。我们量化了跨多个可持续发展领域的最新模型性能,讨论研究和政策应用,探索对未来进步的限制,并突出该领域的关键研究方向。

Accurate and comprehensive measurements of a range of sustainable development outcomes are fundamental inputs into both research and policy. We synthesize the growing literature that uses satellite imagery to understand these outcomes, with a focus on approaches that combine imagery with machine learning. We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution (spatial, temporal, and spectral) of satellite imagery. We then review recent machine learning approaches to model-building in the context of scarce and noisy training data, highlighting how this noise often leads to incorrect assessment of models' predictive performance. We quantify recent model performance across multiple sustainable development domains, discuss research and policy applications, explore constraints to future progress, and highlight key research directions for the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源