论文标题
使用文本信息的轻度异构图协作过滤模型
A Light Heterogeneous Graph Collaborative Filtering Model using Textual Information
论文作者
论文摘要
由于图形神经网络的发展,基于图的表示方法在推荐系统中取得了长足的进步。但是,数据稀疏性仍然是一个具有挑战性的问题,大多数基于图的建议方法都面临。最近的工作试图通过利用侧面信息来解决此问题。在本文中,我们通过高级自然语言处理(NLP)模型来利用相关且易于访问的文本信息,并提出了基于光RGCN的(RGCN,关系图卷积网络)协作过滤方法在异质图上。具体而言,为了结合丰富的文本知识,我们利用预先训练的NLP模型来初始化文本节点的嵌入。之后,通过对构造的异质图进行简化的基于RGCN的节点信息传播,可以通过文本知识调整用户和项目的嵌入,从而有效地减轻了数据稀疏的负面影响。此外,大多数基于图的表示方法使用的匹配函数是内部产品,它不适用于所获得的包含复杂语义的嵌入。我们设计了一个预测网络,将基于图的表示学习与神经匹配功能学习相结合,并证明该体系结构可以带来重大的性能改进。大量实验是在三个公开可用数据集上进行的,结果验证了我们方法的出色性能,而不是几个基线。
Due to the development of graph neural networks, graph-based representation learning methods have made great progress in recommender systems. However, data sparsity is still a challenging problem that most graph-based recommendation methods are confronted with. Recent works try to address this problem by utilizing side information. In this paper, we exploit the relevant and easily accessible textual information by advanced natural language processing (NLP) models and propose a light RGCN-based (RGCN, relational graph convolutional network) collaborative filtering method on heterogeneous graphs. Specifically, to incorporate rich textual knowledge, we utilize a pre-trained NLP model to initialize the embeddings of text nodes. Afterward, by performing a simplified RGCN-based node information propagation on the constructed heterogeneous graph, the embeddings of users and items can be adjusted with textual knowledge, which effectively alleviates the negative effects of data sparsity. Moreover, the matching function used by most graph-based representation learning methods is the inner product, which is not appropriate for the obtained embeddings that contain complex semantics. We design a predictive network that combines graph-based representation learning with neural matching function learning, and demonstrate that this architecture can bring a significant performance improvement. Extensive experiments are conducted on three publicly available datasets, and the results verify the superior performance of our method over several baselines.