论文标题

协方差扩展方程:一种分析插值的Riccati型方法

The Covariance Extension Equation: A Riccati-type Approach to Analytic Interpolation

论文作者

Cui, Yufang, Lindquist, Anders

论文摘要

合理性和衍生性约束的分析插值问题在系统和控制中无处不在。本文基于非标准的Riccati-Type方程,在标量和矩阵情况下为此类问题提供了一种新方法。溶液矩阵的等级与插值的程度相同,因此提供了自然的模型还原方法。提出了一种同质延续方法,并将其应用于建模和稳健控制方面的一些问题。我们还解决了有关Kalman最初提出的协方差序列的正面程度的问题。

Analytic interpolation problems with rationality and derivative constraints are ubiquitous in systems and control. This paper provides a new method for such problems, both in the scalar and matrix case, based on a non-standard Riccati-type equation. The rank of the solution matrix is the same as the degree of the interpolant, thus providing a natural approach to model reduction. A homotopy continuation method is presented and applied to some problems in modeling and robust control. We also address a question on the positive degree of a covariance sequence originally posed by Kalman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源