论文标题

关于离散耐铁的最大函数的无维度估计的一些评论

Some remarks on dimension-free estimates for the discrete Hardy-Littlewood maximal functions

论文作者

Kosz, Dariusz, Mirek, Mariusz, Plewa, Paweł, Wróbel, Błazej

论文摘要

将在强大和弱类型边界中的最佳常数依赖性在与$ \ Mathbb r^d $和$ \ Mathbb z^d $的凸对称体上的最大函数之间进行研究。首先,我们在[1,\ infty] $中的$ p \中显示了$ l^p(\ mathbb r^d)$中的这些最佳常数始终不超过其在$ \ ell^p(\ mathbb z^d)$中的离散类似物;而且我们还表明,在$ p = 1 $的情况下,平等性适用于立方体。 This in particular implies that the best constant in the weak type $(1,1)$ inequality for the discrete Hardy--Littlewood maximal function associated with centered cubes in $\mathbb Z^d$ grows to infinity as $d\to\infty$, and if $d=1$ it is equal to the largest root of the quadratic equation $12C^2-22C+5=0$.其次,我们证明了$ \ ell^p(\ Mathbb z^d)$规范的无尺寸估计,$ p \ in(1,\ infty] $,是离散的硬木 - 最大运算符,限制了限制的量表$ t \ geq c_q c_q c_q c_q c_q c_q d $ $ q $ q $ - $ qublalls $ q $ q \ f。最后,我们将后者的结果扩展到$ \ ell^2(\ mathbb z^d)$的最大运算符,仅限于二元尺度$ 2^n \ ge c_q d^{1/q} $。

Dependencies of the optimal constants in strong and weak type bounds will be studied between maximal functions corresponding to the Hardy--Littlewood averaging operators over convex symmetric bodies acting on $\mathbb R^d$ and $\mathbb Z^d$. Firstly, we show, in the full range of $p\in[1,\infty]$, that these optimal constants in $L^p(\mathbb R^d)$ are always not larger than their discrete analogues in $\ell^p(\mathbb Z^d)$; and we also show that the equality holds for the cubes in the case of $p=1$. This in particular implies that the best constant in the weak type $(1,1)$ inequality for the discrete Hardy--Littlewood maximal function associated with centered cubes in $\mathbb Z^d$ grows to infinity as $d\to\infty$, and if $d=1$ it is equal to the largest root of the quadratic equation $12C^2-22C+5=0$. Secondly, we prove dimension-free estimates for the $\ell^p(\mathbb Z^d)$ norms, $p\in(1,\infty]$, of the discrete Hardy--Littlewood maximal operators with the restricted range of scales $t\geq C_q d$ corresponding to $q$-balls, $q\in[2,\infty)$. Finally, we extend the latter result on $\ell^2(\mathbb Z^d)$ for the maximal operators restricted to dyadic scales $2^n\ge C_q d^{1/q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源