论文标题

利用MRI前列腺病变细分域适应的不确定性

Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion Segmentation

论文作者

Chiou, Eleni, Giganti, Francesco, Punwani, Shonit, Kokkinos, Iasonas, Panagiotaki, Eleftheria

论文摘要

训练数据的需求可能阻碍采用新型成像方式来基于学习的医学图像分析。域的适应方法通过将训练数据从相关的源域转换为新的目标域,可以部分缓解此问题,但通常假定可以进行一对一的翻译。我们的工作解决了适应更有用的目标域的挑战,其中可以从单个源样本中出现多个目标样本。特别是我们考虑将MP-MRI转换为判决,这是一种涉及癌症表征的优化采集方案的更丰富的MRI模式。我们明确说明了该映射的固有不确定性,并利用它以生成以单个输入为条件的多个输出。我们的结果表明,这使我们可以系统地提取目标域的更好的图像表示形式,同时与简单的基于自行车的基层同时使用,以及更强大的方法,这些方法可以整合歧视性分割损失和/或残留适配器。与确定性同行相比,我们的方法在广泛的数据集大小,越来越强大的基准和评估措施之间产生了重大改进。

The need for training data can impede the adoption of novel imaging modalities for learning-based medical image analysis. Domain adaptation methods partially mitigate this problem by translating training data from a related source domain to a novel target domain, but typically assume that a one-to-one translation is possible. Our work addresses the challenge of adapting to a more informative target domain where multiple target samples can emerge from a single source sample. In particular we consider translating from mp-MRI to VERDICT, a richer MRI modality involving an optimized acquisition protocol for cancer characterization. We explicitly account for the inherent uncertainty of this mapping and exploit it to generate multiple outputs conditioned on a single input. Our results show that this allows us to extract systematically better image representations for the target domain, when used in tandem with both simple, CycleGAN-based baselines, as well as more powerful approaches that integrate discriminative segmentation losses and/or residual adapters. When compared to its deterministic counterparts, our approach yields substantial improvements across a broad range of dataset sizes, increasingly strong baselines, and evaluation measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源