论文标题
网络科学中的深层生成建模,并应用于公共政策研究
Deep Generative Modeling in Network Science with Applications to Public Policy Research
论文作者
论文摘要
网络数据越来越多地用于定量,数据驱动的公共政策研究。这些通常是非常丰富的数据集,包含复杂的相关性和相互依存关系。这种丰富性两者都有望在政策研究中非常有用,同时构成了从这些数据集中提取信息的有用挑战 - 这一挑战需要新的数据分析方法。在本报告中,我们制定了关键方法论问题的研究议程,其解决方案将在许多政策研究领域中实现新的进步。然后,我们回顾了将深度学习应用于网络数据的最新进展,并展示如何使用这些方法来解决我们发现的许多方法论问题。我们特别强调了深层生成方法,该方法可用于生成可用于微仿真和基于代理的模型,能够为关键的公共政策问题提供信息。我们通过开发一个新的生成框架来扩展这些最新进展,该框架适用于流行病学建模常用的大型社交接触网络。对于上下文,我们还将这些最新基于神经网络的方法与更传统的指数随机图模型进行了比较和对比。最后,我们讨论需要更多进展的一些开放问题。
Network data is increasingly being used in quantitative, data-driven public policy research. These are typically very rich datasets that contain complex correlations and inter-dependencies. This richness both promises to be quite useful for policy research, while at the same time posing a challenge for the useful extraction of information from these datasets - a challenge which calls for new data analysis methods. In this report, we formulate a research agenda of key methodological problems whose solutions would enable new advances across many areas of policy research. We then review recent advances in applying deep learning to network data, and show how these methods may be used to address many of the methodological problems we identified. We particularly emphasize deep generative methods, which can be used to generate realistic synthetic networks useful for microsimulation and agent-based models capable of informing key public policy questions. We extend these recent advances by developing a new generative framework which applies to large social contact networks commonly used in epidemiological modeling. For context, we also compare and contrast these recent neural network-based approaches with the more traditional Exponential Random Graph Models. Lastly, we discuss some open problems where more progress is needed.