论文标题

Sadovskii Vortex在楔子和相关的Riemann-Hilbert问题上

Sadovskii vortex in a wedge and the associated Riemann-Hilbert problem on a torus

论文作者

Antipov, Y. A., Zemlyanova, A. Y.

论文摘要

在流体力学中引起的许多不同模型中,从规范狭缝域中重建从规范狭缝结构域中具有自由边界的多种物理结构域的重建。在本文中,当流体在Sadovskii涡流中流动时,从两个缝隙的外部从两个狭缝的外部到双连接的流动结构域的保形图的精确公式。该地图用于确定涡流和涡流域边界以外的电势流,前提是规定了涡流周围的循环$γ$,并且涡流边界上的恒定速度$ u $被规定,并且墙壁上没有停滞点。该地图是根据拓扑表面上的合理函数表示的,与圆环等同,解决方案在有限的riemann-hilbert问题上,在同一属-1 riemann表面上的对称的Riemann-Hilbert问题。由于其特殊特征,Riemann-Hilbert问题需要在椭圆表面上进行凯切尔内核的新型类似物。提出并采用了这种内核来为Riemann-Hilbert问题和相关的Jacobi反转问题提供封闭式解决方案。共形图的最终公式具有免费的几何参数和两个模型参数,即楔形角$α$和$γ/u $。结果表明,当$α<π$溶液存在时,涡流具有两个尖端,而当楔形角度超过$π$时,溶液不存在。

Reconstruction of conformal mappings from canonical slit domains onto multiply-connected physical domains with a free boundary is of interest in many different models arising in fluid mechanics. In the present paper, an exact formula for the conformal map from the exterior of two slits onto the doubly connected flow domain is obtained when a fluid flows in a wedge about a Sadovskii vortex. The map is employed to determine the potential flow outside the vortex and the vortex domain boundary provided the circulation $Γ$ around the vortex and constant speed $U$ on the vortex boundary are prescribed, and there are no stagnation points on the walls. The map is expressed in terms of a rational function on an elliptic surface topologically equivalent to a torus and the solution to a symmetric Riemann-Hilbert problem on a finite and a semi-infinite segments on the same genus-1 Riemann surface. Owing to its special features, the Riemann-Hilbert problem requires a novel analogue of the Cauchy kernel on an elliptic surface. Such a kernel is proposed and employed to derive a closed-form solution to the Riemann-Hilbert problem and the associated Jacobi inversion problem. The final formula for the conformal map possesses a free geometric parameter and two model parameters, the wedge angle $α$ and $Γ/U$. It is shown that when $α<π$ the solution exists and the vortex has two cusps, while the solution does not exist when the wedge angle exceeds $π$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源