论文标题

广义的共同因子回归

Generalized Co-sparse Factor Regression

论文作者

Mishra, Aditya, Dey, Dipak K., Chen, Yong, Chen, Kun

论文摘要

多元回归技术通常用于探索大量结果和预测因子之间的关联。在实际应用中,结果通常是混合类型的,包括连续测量,二进制指标和计数,观察结果也可能不完整。提出了基于最新的混合结果建模和稀疏基质分解的进展,提出了广义的共帕尔斯因子回归(GoFar),该回归(Gofar)利用了柔性矢量广义线性模型框架,并通过稀疏的集成自然参数矩阵来编码结果依赖性。为了避免估算臭名昭著的困难关节SSVD,Gofar提出了顺序和平行单位级估计程序。通过结合交替的凸搜索和主要化最小化的想法,开发了具有保证收敛性的有效算法来解决稀疏的单位级问题并在R软件包Gofar中实现。广泛的仿真研究和两个现实世界的应用证明了所提出的方法的有效性。

Multivariate regression techniques are commonly applied to explore the associations between large numbers of outcomes and predictors. In real-world applications, the outcomes are often of mixed types, including continuous measurements, binary indicators, and counts, and the observations may also be incomplete. Building upon the recent advances in mixed-outcome modeling and sparse matrix factorization, generalized co-sparse factor regression (GOFAR) is proposed, which utilizes the flexible vector generalized linear model framework and encodes the outcome dependency through a sparse singular value decomposition (SSVD) of the integrated natural parameter matrix. To avoid the estimation of the notoriously difficult joint SSVD, GOFAR proposes both sequential and parallel unit-rank estimation procedures. By combining the ideas of alternating convex search and majorization-minimization, an efficient algorithm with guaranteed convergence is developed to solve the sparse unit-rank problem and implemented in the R package gofar. Extensive simulation studies and two real-world applications demonstrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源