论文标题

序数结果的深度和可解释的回归模型

Deep and interpretable regression models for ordinal outcomes

论文作者

Kook, Lucas, Herzog, Lisa, Hothorn, Torsten, Dürr, Oliver, Sick, Beate

论文摘要

自然顺序的结果通常在预测任务中发生,并且通常可用的输入数据是复杂数据(例如图像和表格预测指标)的混合。深度学习(DL)模型是图像分类任务的最新模型,但经常将序数视为无序和缺乏解释性。相反,经典的序数回归模型考虑结果的顺序和产生可解释的预测效应,但仅限于表格数据。我们提出了序数神经网络转化模型(ONTRAMS),该模型将DL与经典的序数回归方法结合在一起。 ONTRAMS是转换模型的一种特殊情况,并通过使用共同训练的神经网络将转换函数分解为图像和表格数据的术语,从而使灵活性和可解释性进行了贸易。根据定义,最灵活的ONTRAM的性能等于标准的多级DL模型,该模型在面对顺序结果时在训练中训练更快。最后,我们讨论了如何在两个公开可用数据集上的表格和图像数据解释模型组件。

Outcomes with a natural order commonly occur in prediction tasks and often the available input data are a mixture of complex data like images and tabular predictors. Deep Learning (DL) models are state-of-the-art for image classification tasks but frequently treat ordinal outcomes as unordered and lack interpretability. In contrast, classical ordinal regression models consider the outcome's order and yield interpretable predictor effects but are limited to tabular data. We present ordinal neural network transformation models (ONTRAMs), which unite DL with classical ordinal regression approaches. ONTRAMs are a special case of transformation models and trade off flexibility and interpretability by additively decomposing the transformation function into terms for image and tabular data using jointly trained neural networks. The performance of the most flexible ONTRAM is by definition equivalent to a standard multi-class DL model trained with cross-entropy while being faster in training when facing ordinal outcomes. Lastly, we discuss how to interpret model components for both tabular and image data on two publicly available datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源