论文标题
丝状表面血浆排放流量长度和时间尺度
Filamentary Surface Plasma Discharge Flow Length and Time Scales
论文作者
论文摘要
纳秒表面介电屏障放电(NS-SDBDS)是一类血浆执行器,它们利用两个表面安装的电极之间的纳秒持续时间的高压脉冲以及快速加热。这些致动器通常在高脉搏频率下运行时会产生多个丝,并且快速加热会导致冲击波和复杂流场的形成。在这项工作中,我们复制了NS-SDBD的单丝,并使用粒子图像速率测量和从面向背景的Schlieren的粒子图像速度测量和密度测量的速度测量来表征诱导的流量。放电是由两个丙烯酸底座上两个铜电极之间的高压电脉冲产生的。热气内核表征了靠近电极的流场,随着时间的推移,电极会膨胀和冷却,涡流环从表面传播,同时散布着冷环境流体。内核内的气体密度不足会随着时间的推移显示幂律衰减。基于观察结果,我们基于涡旋驱动的冷却开发了简化的理论模型,并执行缩放分析以获得诱导的流量长度和时间尺度。结果表明,冷却过程的时间尺度对应于涡流环的基于循环的时间尺度,而内核的长度比例对应于涡流环半径。这些发现可以指导在设计,部署和操作纳米表面介电屏障放电(NS-SDBD)中选择最佳细丝间距和脉冲频率以进行流量控制。
Nanosecond Surface Dielectric Barrier Discharge (ns-SDBDs) are a class of plasma actuators that utilize a high-voltage pulse of nanosecond duration between two surface-mounted electrodes to create an electrical breakdown of air, along with rapid heating. These actuators usually produce multiple filaments when operated at high pulse frequencies, and the rapid heating leads to the formation of shock waves and complex flow fields. In this work we replicate a single filament of the ns-SDBDs and characterize the induced flow using velocity measurements from particle image velocimetry and density measurements from background-oriented schlieren. The discharge is produced by a high voltage electrical pulse between two copper electrodes on an acrylic base. A hot gas kernel characterizes the flow field formed close to the electrodes that expands and cools over time and a vortex ring that propagates away from the surface while entraining cold ambient fluid. The gas density deficit inside the kernel displays a power-law decay over time. Based on the observations, we develop a simplified theoretical model based on vortex-driven cooling and perform a scaling analysis to obtain the induced flow length and time scales. The results show that the cooling process's time scales correspond to a circulation-based time scale of the vortex ring, and the length scale of the kernel corresponds to the vortex ring radius. These findings can guide the choice of optimal filament spacing and pulse frequencies in the design, deployment, and operation of nanosecond surface dielectric barrier discharges (ns-SDBDs) for flow control.