论文标题
通过快速和可区分的图像组合查找自动驾驶的身体对抗示例
Finding Physical Adversarial Examples for Autonomous Driving with Fast and Differentiable Image Compositing
论文作者
论文摘要
有大量证据表明,深神经网络容易受到直接应用于其数字输入的对抗性扰动的影响。但是,这仍然是一个悬而未决的问题,这是否转化为真实系统中的漏洞。例如,对自动驾驶汽车的攻击实际上将需要修改驾驶环境,然后将视频输入影响到汽车的控制器,从而间接导致驾驶决策不正确。此类攻击需要考虑系统动力学和跟踪观点变化的核算。我们提出了一种可扩展的方法,用于使用可区分的近似值来查找模拟自主驾驶环境的对抗性修改,以从环境修改(道路上的矩形)映射到控制器神经网络的相应视频输入。鉴于矩形的参数,我们提出的可区分映射复合材料将它们放在原始环境的预录的视频流中,这是对几何和颜色变化的考虑。此外,我们提出了一种多种轨迹采样方法,使我们的攻击能够对汽车的自我纠正行为具有牢固的态度。当与基于神经网络的控制器结合使用时,我们的方法允许通过基于端到端梯度的优化设计对抗性修饰。使用CARLA自动驾驶模拟器,我们表明我们的方法在模拟实验中比基于贝叶斯优化的最先进方法更可扩展和有效地识别自动驾驶汽车脆弱性。
There is considerable evidence that deep neural networks are vulnerable to adversarial perturbations applied directly to their digital inputs. However, it remains an open question whether this translates to vulnerabilities in real systems. For example, an attack on self-driving cars would in practice entail modifying the driving environment, which then impacts the video inputs to the car's controller, thereby indirectly leading to incorrect driving decisions. Such attacks require accounting for system dynamics and tracking viewpoint changes. We propose a scalable approach for finding adversarial modifications of a simulated autonomous driving environment using a differentiable approximation for the mapping from environmental modifications (rectangles on the road) to the corresponding video inputs to the controller neural network. Given the parameters of the rectangles, our proposed differentiable mapping composites them onto pre-recorded video streams of the original environment, accounting for geometric and color variations. Moreover, we propose a multiple trajectory sampling approach that enables our attacks to be robust to a car's self-correcting behavior. When combined with a neural network-based controller, our approach allows the design of adversarial modifications through end-to-end gradient-based optimization. Using the Carla autonomous driving simulator, we show that our approach is significantly more scalable and far more effective at identifying autonomous vehicle vulnerabilities in simulation experiments than a state-of-the-art approach based on Bayesian Optimization.