论文标题
来自成像数据的化学和物理转化途径的无监督的机器学习发现
Unsupervised Machine Learning Discovery of Chemical and Physical Transformation Pathways from Imaging Data
论文作者
论文摘要
我们表明,无监督的机器学习可用于从观察性显微镜数据中学习物理和化学转化途径,如扫描传输电子显微镜(STEM)和铁电域结构中的原子解析图像所证明的那样,在Piezoresponse sipercopicy(PFM)中证明了。为了实现STEM的这种分析,我们假设原子的存在,原子类别的离散性以及观察到的茎对比度与原子单位的存在之间存在明确关系。在PFM中,我们假设测量的信号与极化分布之间的独特定义关系。只有这些假设,我们开发了一种机器学习方法,利用了旋转不变的变异自动编码器(RVAE),该方法可以识别材料中观察到的现有结构单元。该方法使用少量的潜在变量编码图像序列中包含的信息,从而可以通过系统的潜在空间探索化学和物理转化途径。结果表明,通过提供观察到的结构的编码,这些结构可作为结构阶参数的自下而上的等效物,可用于得出所涉及的基本物理和化学机制。该方法还证明了物理科学的变异(即贝叶斯)方法的潜力,并将刺激编码编码器培训体系结构中物理约束的新方法的发展,以及VAE潜在空间中的生成性物理定律,拓扑态度和因果关系。
We show that unsupervised machine learning can be used to learn physical and chemical transformation pathways from the observational microscopic data, as demonstrated for atomically resolved images in Scanning Transmission Electron Microscopy (STEM) and ferroelectric domain structures in Piezoresponse Force Microscopy (PFM). To enable this analysis in STEM, we assumed the existence of atoms, a discreteness of atomic classes, and the presence of an explicit relationship between the observed STEM contrast and the presence of atomic units. In PFM, we assumed the uniquely-defined relationship between the measured signal and polarization distribution. With only these postulates, we developed a machine learning method leveraging a rotationally-invariant variational autoencoder (rVAE) that can identify the existing structural units observed within a material. The approach encodes the information contained in image sequences using a small number of latent variables, allowing the exploration of chemical and physical transformation pathways via the latent space of the system. The results suggest that the high-veracity imaging data can be used to derive fundamental physical and chemical mechanisms involved, by providing encodings of the observed structures that act as bottom-up equivalents of structural order parameters. The approach also demonstrates the potential of variational (i.e., Bayesian) methods for physical sciences and will stimulate the development of new ways to encode physical constraints in the encoder-decoder architectures, and generative physical laws, topological invariances, and causal relationships in the latent space of VAEs.