论文标题

一种基于整数编程的规定拓扑子结构的化合物推断化合物的新方法

A novel method for inference of chemical compounds with prescribed topological substructures based on integer programming

论文作者

Akutsu, Tatsuya, Nagamochi, Hiroshi

论文摘要

化学图的分析由于其在药物设计中的潜在应用而成为计算分子生物学的主要研究主题。此类研究中的主要方法之一是逆数量结构活动/性质关系(反向QSAR/QSPR)分析,即从给定的化学活性/特性中推断化学结构。最近,使用人工神经网络(ANN)和混合整数线性编程(MILP)提出了一个新颖的框架,用于QSAR/QSPR。该方法由预测阶段和一个反向预测阶段组成。在第一阶段,引入了化学图$ g $的功能向量$ f(g)$,并且预测函数$ψ_ {\ Mathcal {n}} $上的化学属性$π$是由Ann $ \ Mathcal {n} $构建的。在第二阶段,给定化学属性$π$的目标值$ y^*$,通过求解从经过训练的Ann $ \ Mathcal {n} $中提出的MILP来推断出$ x^*$ X^*$由图枚举算法枚举。该框架已应用于具有相当抽象的拓扑结构的化合物,例如无环或单核图和图形,并具有指定的聚合物拓扑结构,其周期索引高达2个。 在本文中,我们向框架提出了一种新的灵活建模方法,以便我们可以指定图形的拓扑亚结构,以及对目标图的化学元素和键多重性的部分分配。

Analysis of chemical graphs is becoming a major research topic in computational molecular biology due to its potential applications to drug design. One of the major approaches in such a study is inverse quantitative structure activity/property relationships (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical activities/properties. Recently, a novel framework has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP). This method consists of a prediction phase and an inverse prediction phase. In the first phase, a feature vector $f(G)$ of a chemical graph $G$ is introduced and a prediction function $ψ_{\mathcal{N}}$ on a chemical property $π$ is constructed with an ANN $\mathcal{N}$. In the second phase, given a target value $y^*$ of the chemical property $π$, a feature vector $x^*$ is inferred by solving an MILP formulated from the trained ANN $\mathcal{N}$ so that $ψ_{\mathcal{N}}(x^*)$ is equal to $y^*$ and then a set of chemical structures $G^*$ such that $f(G^*)= x^*$ is enumerated by a graph enumeration algorithm. The framework has been applied to chemical compounds with a rather abstract topological structure such as acyclic or monocyclic graphs and graphs with a specified polymer topology with cycle index up to 2. In this paper, we propose a new flexible modeling method to the framework so that we can specify a topological substructure of graphs and a partial assignment of chemical elements and bond-multiplicity to a target graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源