论文标题

SHREC 2020曲目:6D对象姿势估计

SHREC 2020 track: 6D Object Pose Estimation

论文作者

Yuan, Honglin, Veltkamp, Remco C., Albanis, Georgios, Zioulis, Nikolaos, Zarpalas, Dimitrios, Daras, Petros

论文摘要

6D姿势估计对于增强现实,虚拟现实,机器人操纵和视觉导航至关重要。但是,由于现实世界中的各种物体,问题都具有挑战性。它们具有不同的3D形状,其在捕获的图像中的外观受传感器噪声,改变照明条件和对象之间的遮挡的影响。不同的姿势估计方法具有不同的优势和劣势,具体取决于特征表示和场景内容。同时,用于数据驱动方法的现有3D数据集估算6D姿势的视图角度有限,并且分辨率低。为了解决这些问题,我们在6D姿势估计上组织了形状检索挑战基准,并创建了一个物理上精确的模拟器,该模拟器能够生成带有相应地面真相6D姿势的光 - 真实的颜色和深度图像对。从捕获的颜色和深度图像中,我们使用此模拟器生成一个3D数据集,该数据集具有400个逼真的综合颜色和深度图像对,具有各种视图角度进行训练,还有100个捕获和合成图像用于测试。五个研究小组在此轨道中注册,其中两个提交了他们的结果。数据驱动的方法是6D对象姿势估计的当前趋势,我们的评估结果表明,完全利用颜色和几何特征的方法对于6D姿势估计反射性和无纹理和无纹理对象以及遮挡更为强大。这种基准和比较评估结果有可能进一步丰富和增强6D对象姿势估计及其应用的研究。

6D pose estimation is crucial for augmented reality, virtual reality, robotic manipulation and visual navigation. However, the problem is challenging due to the variety of objects in the real world. They have varying 3D shape and their appearances in captured images are affected by sensor noise, changing lighting conditions and occlusions between objects. Different pose estimation methods have different strengths and weaknesses, depending on feature representations and scene contents. At the same time, existing 3D datasets that are used for data-driven methods to estimate 6D poses have limited view angles and low resolution. To address these issues, we organize the Shape Retrieval Challenge benchmark on 6D pose estimation and create a physically accurate simulator that is able to generate photo-realistic color-and-depth image pairs with corresponding ground truth 6D poses. From captured color and depth images, we use this simulator to generate a 3D dataset which has 400 photo-realistic synthesized color-and-depth image pairs with various view angles for training, and another 100 captured and synthetic images for testing. Five research groups register in this track and two of them submitted their results. Data-driven methods are the current trend in 6D object pose estimation and our evaluation results show that approaches which fully exploit the color and geometric features are more robust for 6D pose estimation of reflective and texture-less objects and occlusion. This benchmark and comparative evaluation results have the potential to further enrich and boost the research of 6D object pose estimation and its applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源