论文标题
介绍和应用牛顿模糊:braingraph.org的126,000人连接的增强数据集
Introducing and Applying Newtonian Blurring: An Augmented Dataset of 126,000 Human Connectomes at braingraph.org
论文作者
论文摘要
高斯模糊是图像数据增强的一种完善的方法:它可能会从一小部分图片中生成大量图像,以供人工智能(AI)应用程序进行培训和测试。当我们将AI应用于非仿制的生物学数据时,几乎没有任何相关方法。在这里,我们介绍了人类Braingraph(或Connectome)增强中的“牛顿模糊”:从1053个受试者的数据集开始,我们首先重复一个概率加权的braingraph构造算法10次,以描述不同的典型区域的连接,然后在每个可能的范围内进行7个重复,并在每个可能的范围内进行7--平均范围,并在范围内进行7---平均范围,并在范围内进行7----驱动器,并在平均范围内进行7--2每个主题。这样,我们将1053图表扩展到120 x 1053 = 126,360图。在增强技术中,重要的是,不应将人工添加到数据集中。高斯模糊,这个牛顿的模糊也能满足这一目标。在网站https://braingraph.org/cms/download-pot-pit-pit-proup-connectomes/-网站上免费获得,共有126,360个图的数据集,每个图表中的5个分辨率(即总共631,800个图)。使用牛顿模糊的增强也可能适用于其他非图像相关的领域,在其他非图像相关的领域中,实施了概率处理和数据平均。
Gaussian blurring is a well-established method for image data augmentation: it may generate a large set of images from a small set of pictures for training and testing purposes for Artificial Intelligence (AI) applications. When we apply AI for non-imagelike biological data, hardly any related method exists. Here we introduce the "Newtonian blurring" in human braingraph (or connectome) augmentation: Started from a dataset of 1053 subjects, we first repeat a probabilistic weighted braingraph construction algorithm 10 times for describing the connections of distinct cerebral areas, then take 7 repetitions in every possible way, delete the lower and upper extremes, and average the remaining 7-2=5 edge-weights for the data of each subject. This way we augment the 1053 graph-set to 120 x 1053 = 126,360 graphs. In augmentation techniques, it is an important requirement that no artificial additions should be introduced into the dataset. Gaussian blurring and also this Newtonian blurring satisfy this goal. The resulting dataset of 126,360 graphs, each in 5 resolutions (i.e., 631,800 graphs in total), is freely available at the site https://braingraph.org/cms/download-pit-group-connectomes/. Augmenting with Newtonian blurring may also be applicable in other non-image related fields, where probabilistic processing and data averaging are implemented.