论文标题
Langevin动力学上的过渡路径理论:最佳控制和数据驱动的求解器
Transition path theory for Langevin dynamics on manifold: optimal control and data-driven solver
论文作者
论文摘要
我们提出了稀有事件的数据驱动的观点,该观点代表了由高度的歧管上过度阻尼的Langevin动力学建模的生化反应中的构象转变。我们首先从最佳控制观点重新解释了过渡状态理论和过渡路径理论。给定的点云从反应动力学中采样,我们基于近似Voronoi Tesselation构建离散的Markov过程。我们使用构建的马尔可夫进程来计算一个离散委员会函数,其级别设置会自动订购点云。然后基于委员会功能,构建并利用了最佳控制的随机步行,以有效地采样过渡路径,这成为$ O(1)$时间的几乎确定的事件,而不是原始反应动力学中的罕见事件。为了有效地计算平均过渡路径,开发了基于最佳控制随机步行的局部平均算法,该算法将适应有限温度字符串方法适应受控的蒙特卡洛样品。进行了真空中丙氨酸二肽的构象转变,以说明点云上的过渡路径理论的数据驱动的求解器。通过受控的蒙特卡洛模拟获得的平均过渡路径高度与过渡路径理论中计算的主要过渡路径相吻合。
We present a data-driven point of view for rare events, which represent conformational transitions in biochemical reactions modeled by over-damped Langevin dynamics on manifolds in high dimensions. We first reinterpret the transition state theory and the transition path theory from the optimal control viewpoint. Given point clouds sampled from a reaction dynamics, we construct a discrete Markov process based on an approximated Voronoi tesselation. We use the constructed Markov process to compute a discrete committor function whose level set automatically orders the point clouds. Then based on the committor function, an optimally controlled random walk on point clouds is constructed and utilized to efficiently sample transition paths, which become an almost sure event in $O(1)$ time instead of a rare event in the original reaction dynamics. To compute the mean transition path efficiently, a local averaging algorithm based on the optimally controlled random walk is developed, which adapts the finite temperature string method to the controlled Monte Carlo samples. Numerical examples on sphere/torus including a conformational transition for the alanine dipeptide in vacuum are conducted to illustrate the data-driven solver for the transition path theory on point clouds. The mean transition path obtained via the controlled Monte Carlo simulations highly coincides with the computed dominant transition path in the transition path theory.