论文标题
$α$ clustering $^{16} $ o的签名通过使用多相传输模型
Signatures of $α$ clustering in $^{16}$O by using a multiphase transport model
论文作者
论文摘要
可以通过相对论重离子碰撞拍摄的“快照”来研究光核中$α$的结构。采用多相传输(AMPT)模型来模拟碰撞核的初始结构和质量能量中心$ \ sqrt {s_ {nn}} $ = 6.37 tev的碰撞碰撞。这种初始结构最终可以反映在随后的观测值中,例如椭圆流($ v_ {2} $),三角形流($ v_ {3} $)和四角流($ v_4 $)。选择了三组碰撞系统来说明系统扫描是识别异国$α$α$ clustered核结构的一种好方法I:$ \ Mathrm {^{^{16} o} $ nucleus nucleus nucleus nucleus(有或没有$α$ -cluster) +普通核(始终在木材中的分布中)$ $} $} $ nir cuit ii:cuitr { (有没有$α$ -Cluster) + $ \ Mathrm {^{^{197} au} $ nucleus colles collisision colprisions for中心依赖性和案例III:对称碰撞系统(即,$^{10} $ b + $ $^{10} $^{10} $^{12} $^{12} $ C + C + $ c + c + $ c + $ c + $^{12} $ + $^{16} $ O(有或没有$α$ -Cluster),$^{20} $ ne + $^{20} $ ne和$^{40} $ CA + $^{40} $ CA)在大多数中央碰撞中。我们的计算表明,相对论的重型离子碰撞实验在$ \ sqrt {s_ {nn}} $ = 6.37 TEV被许诺将$ \ mathrm {^{^{16} o} $的四面体结构与伍德斯 - 西克森(Woods-Saxon)和sheed One scan Projects scan Projects n of Scan scan项目进行区分。
$α$-clustered structures in light nuclei could be studied through "snapshots" taken by relativistic heavy-ion collisions. A multiphase transport (AMPT) model is employed to simulate the initial structure of collision nuclei and the proceeding collisions at center of mass energy $\sqrt{s_{NN}}$ = 6.37 TeV. This initial structure can finally be reflected in the subsequent observations, such as elliptic flow ($v_{2}$), triangular flow ($v_{3}$) and quadrangular flow ($v_4$). Three sets of the collision systems are chosen to illustrate system scan is a good way to identify the exotic $α$-clustered nuclear structure, case I: $\mathrm{^{16}O}$ nucleus (with or without $α$-cluster) + ordinary nuclei (always in Woods-Saxon distribution) in most central collisions, case II: $\mathrm{^{16}O}$ nucleus (with or without $α$-cluster) + $\mathrm{^{197}Au}$ nucleus collisions for centrality dependence, and case III: symmetric collision systems (namely, $^{10}$B + $^{10}$B, $^{12}$C + $^{12}$C, $^{16}$O + $^{16}$O (with or without $α$-cluster), $^{20}$Ne + $^{20}$Ne, and $^{40}$Ca + $^{40}$Ca) in most central collisions. Our calculations propose that relativistic heavy-ion collision experiments at $\sqrt{s_{NN}}$ = 6.37 TeV are promised to distinguish the tetrahedron structure of $\mathrm{^{16}O}$ from the Woods-Saxon one and shed lights on the system scan projects in experiments.