论文标题

临界对称性分辨纠缠中的有限尺寸校正

Finite-size corrections in critical symmetry-resolved entanglement

论文作者

Estienne, Benoit, Ikhlef, Yacine, Morin-Duchesne, Alexi

论文摘要

在存在保守量的情况下,对称分辨的纠缠熵是子系统纠缠熵的通常概念。对于关键的一维量子系统,最近在各种情况下显示了这些数量通常以缩放限制限制熵的焦点,即它们与对称部门无关。 在本文中,我们检查了针对熵电气现象的有限尺寸校正,并表明对称群的性质起着至关重要的作用。在离散对称组的情况下,校正以系统大小为代数衰减,指数与操作员的缩放尺寸有关。相反,在U(1)对称组的情况下,校正仅具有系统大小的对数衰减,并具有模型依赖性的预成分。我们表明,这些预成分的确定归结为扭曲重叠的计算。

In the presence of a conserved quantity, symmetry-resolved entanglement entropies are a refinement of the usual notion of entanglement entropy of a subsystem. For critical 1d quantum systems, it was recently shown in various contexts that these quantities generally obey entropy equipartition in the scaling limit, i.e. they become independent of the symmetry sector. In this paper, we examine the finite-size corrections to the entropy equipartition phenomenon, and show that the nature of the symmetry group plays a crucial role. In the case of a discrete symmetry group, the corrections decay algebraically with system size, with exponents related to the operators' scaling dimensions. In contrast, in the case of a U(1) symmetry group, the corrections only decay logarithmically with system size, with model-dependent prefactors. We show that the determination of these prefactors boils down to the computation of twisted overlaps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源