论文标题

确保:无监督培训深度图像重建算法的一般方法

ENSURE: A General Approach for Unsupervised Training of Deep Image Reconstruction Algorithms

论文作者

Aggarwal, Hemant Kumar, Pramanik, Aniket, John, Maneesh, Jacob, Mathews

论文摘要

与经典的压缩传感和基于模型的算法相比,使用深学习算法的图像重建提供了改进的重建质量和更低的重建时间。不幸的是,在几种应用程序中,干净且完全采样的基础真相数据通常无法使用,从而限制了上述方法的适用性。我们介绍了一种新颖的度量标准,该指标称为集合Stein的无偏风险估计(确保)框架,该框架可用于训练深层图像重建算法,而无需完全采样和无噪声图像。所提出的框架是对图像由不同测量运算符对图像进行采样的设置的经典肯定和GSURE公式的概括,该设置是从集合中随机选择的。我们评估了对抽样模式的GSURE损失函数的期望,以获得确保损失函数。我们表明,这种损失是对真正的均方错误的公正估计,该错误为GSURE提供了更好的替代方案,该错误仅提供了预测错误的无偏估计。我们的实验表明,使用此损失功能训练的网络可以提供与监督设置相当的重建。当我们在MR图像恢复的背景下演示此框架时,确保框架通常适用于任意反向问题。

Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源