论文标题
暴雪挑战2020的NTU-AISG文本到语音系统
The NTU-AISG Text-to-speech System for Blizzard Challenge 2020
论文作者
论文摘要
我们在本文中报告了暴雪挑战2020的NTU-AISG文本到语音(TTS)条目系统。在今年的挑战中有两个TTS任务,一个是普通话TTS任务,另一个是上海方言TTS任务。我们已经参与了两者。主要挑战之一是构建具有低资源限制的TTS系统,特别是对于上海方言,其中大约三个小时的数据可供参与者使用。为了克服约束,我们采用了一种普通的扬声器建模方法。也就是说,我们首先采用外部普通话数据来训练端到端的声学模型和Wavenet Vocoder,然后我们使用上海方言分别调整声学模型和WaveNet Vocoder。除此之外,尽管为培训数据提供了音节成绩单,但我们没有上海方言词典。由于我们不确定在训练阶段是否为评估数据提供了类似的音节成绩单,因此我们将普通话词典用于上海方言。用这封信,从相应的普通话音节分解为输入,尽管合成语音的自然性和原始说话者相似性很好,但主观评估结果表明,综合语音的清晰度对上海方言TTS系统严重破坏了。
We report our NTU-AISG Text-to-speech (TTS) entry systems for the Blizzard Challenge 2020 in this paper. There are two TTS tasks in this year's challenge, one is a Mandarin TTS task, the other is a Shanghai dialect TTS task. We have participated both. One of the main challenges is to build TTS systems with low-resource constraints, particularly for the case of Shanghai dialect, of which about three hours data are available to participants. To overcome the constraint, we adopt an average-speaker modeling method. That is, we first employ external Mandarin data to train both End-to-end acoustic model and WaveNet vocoder, then we use Shanghai dialect to tune the acoustic model and WaveNet vocoder respectively. Apart from this, we have no Shanghai dialect lexicon despite syllable transcripts are provided for the training data. Since we are not sure if similar syllable transcripts are provided for the evaluation data during the training stage, we use Mandarin lexicon for Shanghai dialect instead. With the letter, as decomposed from the corresponding Mandarin syllable, as input, though the naturalness and original speaker similarity of the synthesized speech are good, subjective evaluation results indicate the intelligibility of the synthesized speech is deeply undermined for the Shanghai dialect TTS system.