论文标题

印度拉贾斯坦邦降雨的预测使用深层和广泛的神经网络

Prediction of Rainfall in Rajasthan, India using Deep and Wide Neural Network

论文作者

Bajpai, Vikas, Bansal, Anukriti, Verma, Kshitiz, Agarwal, Sanjay

论文摘要

降雨是一个自然的过程,在各个地区至关重要,包括水周期,地下水充电,灾难管理和经济周期。准确的降雨强度预测是一项具有挑战性的任务,其确切的预测在各个方面都有帮助。在本文中,我们提出了一个深厚的降雨预测模型(DWRPM),并评估了其使用历史序列数据来预测印度拉贾斯坦邦降雨的有效性。对于宽网络,我们使用卷积层后获得的功能,而不是直接使用降雨强度值。对于深部,使用多层感知器(MLP)。地理参数(纬度和经度)的信息以独特的方式包含。它使模型具有概括能力,这有助于单个模型在不同的地理条件下进行降雨预测。我们将结果与MLP,LSTM和CNN等各种深度学习方法进行了比较,这些方法可在基于序列的预测中效果很好。实验分析和比较显示了我们提出的方法在拉贾斯坦邦预测的适用性。

Rainfall is a natural process which is of utmost importance in various areas including water cycle, ground water recharging, disaster management and economic cycle. Accurate prediction of rainfall intensity is a challenging task and its exact prediction helps in every aspect. In this paper, we propose a deep and wide rainfall prediction model (DWRPM) and evaluate its effectiveness to predict rainfall in Indian state of Rajasthan using historical time-series data. For wide network, instead of using rainfall intensity values directly, we are using features obtained after applying a convolutional layer. For deep part, a multi-layer perceptron (MLP) is used. Information of geographical parameters (latitude and longitude) are included in a unique way. It gives the model a generalization ability, which helps a single model to make rainfall predictions in different geographical conditions. We compare our results with various deep-learning approaches like MLP, LSTM and CNN, which are observed to work well in sequence-based predictions. Experimental analysis and comparison shows the applicability of our proposed method for rainfall prediction in Rajasthan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源