论文标题

将机器学习物理学映射到人类可读空间

Mapping Machine-Learned Physics into a Human-Readable Space

论文作者

Faucett, Taylor, Thaler, Jesse, Whiteson, Daniel

论文摘要

我们提出了一种技术,用于将在高维输入空间上运行的黑盒机学习分类器转换为一组可以合并的人解释可观察到的,以做出相同的分类决策。我们通过找到相对于黑匣子的最高决策相似性的人从大量的高级判别物中进行迭代选择这些可观察到的物品,该指标通过度量量化,我们介绍了评估输入对的相对顺序。连续的迭代仅着眼于当前可观察到的输入对的子集。该方法可以简化机器学习策略,根据理解的物理概念,对物理模型的验证以及对问题本身的本质进行新的见解的潜力。作为演示,我们将方法应用于对撞机物理学中的JET分类的基准任务,在该物理学中,卷积神经网络作用在量热仪喷气图像上的表现优于六个著名的喷气子结构可观察到的。我们的方法将卷积神经网络映射到一组名为“能量流多项式”的可观察物中,并通过识别具有有趣的物理解释的一类可观察到的物理解释来缩小性能差距,这在Jet子结构文献中以前曾被忽略过。

We present a technique for translating a black-box machine-learned classifier operating on a high-dimensional input space into a small set of human-interpretable observables that can be combined to make the same classification decisions. We iteratively select these observables from a large space of high-level discriminants by finding those with the highest decision similarity relative to the black box, quantified via a metric we introduce that evaluates the relative ordering of pairs of inputs. Successive iterations focus only on the subset of input pairs that are misordered by the current set of observables. This method enables simplification of the machine-learning strategy, interpretation of the results in terms of well-understood physical concepts, validation of the physical model, and the potential for new insights into the nature of the problem itself. As a demonstration, we apply our approach to the benchmark task of jet classification in collider physics, where a convolutional neural network acting on calorimeter jet images outperforms a set of six well-known jet substructure observables. Our method maps the convolutional neural network into a set of observables called energy flow polynomials, and it closes the performance gap by identifying a class of observables with an interesting physical interpretation that has been previously overlooked in the jet substructure literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源