论文标题

室温氮化硼的自旋缺陷的连贯控制

Room Temperature Coherent Control of Spin Defects in hexagonal Boron Nitride

论文作者

Gottscholl, Andreas, Diez, Matthias, Soltamov, Victor, Kasper, Christian, Sperlich, Andreas, Kianinia, Mehran, Bradac, Carlo, Aharonovich, Igor, Dyakonov, Vladimir

论文摘要

具有可及旋转状态的固体中的光学活性缺陷是固态量子信息和传感应用的有希望的候选物。要用这些缺陷作为量子构建块,需要对其旋转状态进行连贯的操纵。在这里,我们意识到对硼的空缺(v $ _b^ - $)中心的六角硼(HBN)中心的连贯控制。具体而言,通过应用脉冲旋转共振协议,我们在室温下测量18 $μ$ s的自旋晶格放松时间($ t_1 $)为2 $μ$。在低温温度下,自旋存在的松弛时间增加了三个数量级。此外,采用两脉冲和三脉冲电子旋转回波调制(ESEEM),我们将四极杆和超细相互作用与周围的核分开。最后,通过应用一种将旋转状态与其不均匀核环境解脱的方法 - 一种“燃料燃烧” - 光谱光学检测到的磁共振线大大降低到几十kHz,从而将自旋相干时间延长了三个。我们的结果对于使用HBN作为高分辨率量子传感器的杂种量子系统(包括2D异质结构,纳米级设备和新兴的原子薄磁铁)的量子技术很重要,特别是在使用HBN作为高分辨率量子传感器的背景下。

Optically active defects in solids with accessible spin states are promising candidates for solid state quantum information and sensing applications. To employ these defects as quantum building blocks, coherent manipulation of their spin state is required. Here we realize coherent control of ensembles of boron vacancy (V$_B^-$) centers in hexagonal boron nitride (hBN). Specifically, by applying pulsed spin resonance protocols, we measure spin-lattice relaxation time ($T_1$) of 18 $μ$s and spin coherence time ($T_2$) of 2 $μ$s at room temperature. The spin-lattice relaxation time increases by three orders of magnitude at cryogenic temperature. Furthermore, employing a two- and three-pulse electron spin-echo envelope modulation (ESEEM) we separate the quadrupole and hyperfine interactions with the surrounding nuclei. Finally, by applying a method to decouple the spin state from its inhomogeneous nuclear environment - a "hole-burning" - the spectral optically detected magnetic resonance linewidth is significantly reduced to several tens of kHz, thus extending the spin coherence time by a factor of three. Our results are important for employment of van der Waals materials for quantum technologies, specifically in the context of using hBN as a high-resolution quantum sensor for hybrid quantum systems including 2D heterostructures, nanoscale devices and emerging atomically thin magnets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源