论文标题

与合并非线性的$ \ mathbb {r}^n $中的一类分数schrödinger方程的无限解决方案存在

Existence of infinitely many solutions for a class of fractional Schrödinger equations in $\mathbb{R}^N$ with combined nonlinearities

论文作者

Khoutir, Sofiane

论文摘要

本文专用于以下非线性分数schrödinger方程:\ begin {equination*}(-Δ) (0,1)$,$ n> 2s $,$(δ)^{s} $代表分数laplacian,$λ\ in \ mathbb {r} $是一个参数,$ v \ in c(\ mathbb {r}^n,r}^n,r) $ u $。我们通过喷泉定理证明了上述方程的许多高能解决方案的存在。最近的一些结果得到了扩展并大幅改善。

This paper is devoted to the following class of nonlinear fractional Schrödinger equations: \begin{equation*} (-Δ)^{s} u + V(x)u = f(x,u) + λg(x,u), \quad \text{in}\: \mathbb{R}^N, \end{equation*} where $s\in (0,1)$, $N>2s$, $(-Δ)^{s}$ stands for the fractional Laplacian, $λ\in \mathbb{R}$ is a parameter, $V\in C(\mathbb{R}^N,R)$, $f(x,u)$ is superlinear and $g(x,u)$ is sublinear with respect to $u$, respectively. We prove the existence of infinitely many high energy solutions of the aforementioned equation by means of the Fountain theorem. Some recent results are extended and sharply improved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源