论文标题

通过交叉学习的多任务监督学习

Multi-task Supervised Learning via Cross-learning

论文作者

Cervino, Juan, Bazerque, Juan Andres, Calvo-Fullana, Miguel, Ribeiro, Alejandro

论文摘要

在本文中,我们考虑了一个称为多任务学习的问题,该问题包括拟合旨在解决不同任务的一组分类器或回归功能。在我们的新颖表述中,我们将这些功能的参数融合在一起,以便它们在特定于任务的域中学习,同时保持彼此靠近。这有助于交叉利用,其中在不同领域收集的数据有助于改善彼此的学习绩效。首先,我们提出了一个简化的案例,即目标是估算两个高斯变量的手段,以便获得有关提议的交叉学习策略优势的一些见解。然后,我们提供一种随机投影梯度算法,以对通用损耗函数进行交叉学习。如果参数的数量很大,则投影步骤在计算上变得昂贵。为了避免这种情况,我们得出了一种原始的双重算法,该算法利用了双重问题的结构,实现了一个公式,其复杂性仅取决于任务的数量。通过在不同领域的数据集上训练的神经网络进行图像分类的初步数值实验证实了交叉学习函数的表现优于特定于任务和共识方法。

In this paper we consider a problem known as multi-task learning, consisting of fitting a set of classifier or regression functions intended for solving different tasks. In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other. This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task. First, we present a simplified case in which the goal is to estimate the means of two Gaussian variables, for the purpose of gaining some insights on the advantage of the proposed cross-learning strategy. Then we provide a stochastic projected gradient algorithm to perform cross-learning over a generic loss function. If the number of parameters is large, then the projection step becomes computationally expensive. To avoid this situation, we derive a primal-dual algorithm that exploits the structure of the dual problem, achieving a formulation whose complexity only depends on the number of tasks. Preliminary numerical experiments for image classification by neural networks trained on a dataset divided in different domains corroborate that the cross-learned function outperforms both the task-specific and the consensus approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源