论文标题

从时空信号推理的分层图信号处理方法

A Hierarchical Graph Signal Processing Approach to Inference from Spatiotemporal Signals

论文作者

Ghoroghchian, Nafiseh, Draper, Stark C., Genov, Roman

论文摘要

在图形信号处理(GSP)的新兴区域的动机中,我们引入了一种新的方法来从时空信号中提取推断。随着时间的推移,不同位置的数据采集在传感器网络中很常见,用于从无线网络中的对象跟踪到医学用途(例如脑电图(EEG)信号处理)的不同应用。在本文中,我们利用GSP的新技术来通过将数据映射到一系列时空图上来开发分层特征提取方法。这样的模型将信号映射到图形的顶点,并且信号之间的时空依赖关系是由边缘重量建模的。从不同位置获得的信号组件通常具有复杂的功能依赖性。因此,它们相应的图形权重从数据中学到并以两种方式使用。首先,它们被用作与图形拓扑相关的嵌入的一部分,例如密度。其次,它们提供了基本图的连接性,用于提取更高级别的基于GSP的功能。后者包括信号图在不同频段中的傅立叶变换的能量。我们测试了Kaggle癫痫发作检测竞赛的颅内EEG(IEEG)数据集的方法。与获胜代码相比,每个受试者分析的净改进和高达6%的提高,而功能的数量平均减少了75%。

Motivated by the emerging area of graph signal processing (GSP), we introduce a novel method to draw inference from spatiotemporal signals. Data acquisition in different locations over time is common in sensor networks, for diverse applications ranging from object tracking in wireless networks to medical uses such as electroencephalography (EEG) signal processing. In this paper we leverage novel techniques of GSP to develop a hierarchical feature extraction approach by mapping the data onto a series of spatiotemporal graphs. Such a model maps signals onto vertices of a graph and the time-space dependencies among signals are modeled by the edge weights. Signal components acquired from different locations and time often have complicated functional dependencies. Accordingly, their corresponding graph weights are learned from data and used in two ways. First, they are used as a part of the embedding related to the topology of graph, such as density. Second, they provide the connectivities of the base graph for extracting higher level GSP-based features. The latter include the energies of the signal's graph Fourier transform in different frequency bands. We test our approach on the intracranial EEG (iEEG) data set of the Kaggle epileptic seizure detection contest. In comparison to the winning code, the results show a slight net improvement and up to 6 percent improvement in per subject analysis, while the number of features are decreased by 75 percent on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源