论文标题
化学诱导石墨烯 - 二甲amond转化的纳米热力学
Nano-thermodynamics of chemically induced graphene-diamond transformation
论文作者
论文摘要
将近二维的钻石(或Diamane)被垂涎为超薄的$ sp^3 $碳胶片,具有独特的力学和电力。非常薄($ 〜h $)使表面化学反应成为可能,例如吸附的原子,从多层石墨烯中转移散装相热力学,有利于钻石。热力学理论以及原子第一原理计算不仅预测了所需压力的降低($ p/p/p _ {\ infty}> 1-H_0/h $),还可以预测成核屏障,对Diaane形成的动力学可行性确定。此外,双层石墨烯上的最佳吸附剂椅图案会产生立方钻石晶格,而对于更厚的前体,吸附剂的船舶结构倾向于产生六边形钻石(Lonsdaleite),如果石墨烯是在AA“堆叠中的石墨烯)。作为吸附剂,H和F有利于钻石形成,而CL似乎受到了固定的阻碍。
Nearly two-dimensional diamond, or diamane, is coveted as ultrathin $sp^3$-carbon film with unique mechanics and electro-optics. The very thinness ($~h$) makes it possible for the surface chemistry, e.g. adsorbed atoms, to shift the bulk phase thermodynamics in favor of diamond, from multilayer graphene. Thermodynamic theory coupled with atomistic first principles computations predicts not only the reduction of required pressure ($p/p_{\infty}>1-h_0/h$), but also the nucleation barriers, definitive for the kinetic feasibility of diamane formation. Moreover, the optimal adsorbent chair-pattern on a bilayer graphene results in a cubic diamond lattice, while for thicker precursors the adsorbent boat-structure tends to produce hexagonal diamond (lonsdaleite), if graphene was in AA` stacking to start with. As adsorbents, H and F are conducive to diamond formation, while Cl appears sterically hindered.