论文标题
在并行机上使用完整的多部分不兼容图进行调度
Scheduling with Complete Multipartite Incompatibility Graph on Parallel Machines
论文作者
论文摘要
在本文中,我们考虑在工作之间存在不兼容的并行机器上安排问题的问题。不兼容的关系可以建模为一个完整的多方图,其中每个边缘表示无法在同一台计算机上安排的一对作业。我们的研究源于Bodlaender等人的工作,[1992,1993]。特别是,我们追求由Mallek等人进行部分调查的线路,其中图是完整的多部分,因此每台机器只能从一个分区中完成工作。我们还将结果与Jansen等人〜[2019]的类别限制的最新方法联系起来,提供了我们的案例与其概括之间的联系。在本文中,我们提供了几种构建时间表的算法,这些算法相对于最佳的两个最佳标准:CMAX(MakePan)和σCJ(总完成时间)。我们在论文中考虑了各种机器类型:相同,统一,无关和自然的无关机器子壳。我们的结果包括在这些约束中对易于(多项式)和NP硬性问题的界定。在问题很难的情况下,我们还提供算法,可以保证恒定的最差近似值率,甚至在某些情况下是PTA。特别是,我们填补了研究的差距,即在统一机器上找到最小完成时间的时间表的问题。我们通过开发具有适当舍入的线性编程放松技术来解决这个问题,据我们所知,这是在考虑的环境中的新颖性。
In this paper we consider the problem of scheduling on parallel machines with a presence of incompatibilities between jobs. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that cannot be scheduled on the same machine. Our research stems from the work of Bodlaender et al.~[1992, 1993]. In particular, we pursue the line investigated partially by Mallek et al.~[2019], where the graph is complete multipartite so each machine can do jobs only from one partition. We also tie our results to the recent approach for so-called identical machines with class constraints by Jansen et al.~[2019], providing a link between our case and their generalization. In the paper we provide several algorithms constructing schedules, optimal or approximate with respect to the two most popular criteria of optimality: Cmax (the makespan) and ΣCj(the total completion time). We consider a variety of machine types in our paper: identical, uniform, unrelated, and a natural subcase of unrelated machines. Our results consist of delimitation of the easy (polynomial) and NP-hard problems within these constraints. In the case when the problem is hard, we also provide algorithm, either with a guaranteed constant worst-case approximation ratio or even in some cases a PTAS. In particular, we fill the gap on research for the problem of finding a schedule with smallest total completion time on uniform machines. We address this problem by developing a linear programming relaxation technique with an appropriate rounding, which to our knowledge is a novelty for this criterion in the considered setting.