论文标题

衡量影响对个人的影响的影响:量化态度的路线图

Measuring the Impact of Influence on Individuals: Roadmap to Quantifying Attitude

论文作者

Fu, Xiaoyun, Padmanabhan, Madhavan Rajagopal, Kumar, Raj Gaurav, Basu, Samik, Dorius, Shawn, Aduri, Pavan

论文摘要

影响扩散一直是社交网络中信息传播的核心,在社交网络中,影响通常被建模为实体的二元特性:受影响或不受影响。我们介绍了态度的概念,如社会心理学中所述,该态度是实体受信息影响的程度。我们提出了一个信息扩散模型,该模型量化了社交网络中影响程度,即个人的态度。使用此模型,我们制定和研究态度最大化问题。我们证明,计算态度的功能是单调的和亚模型的,态度最大化问题是NP-HARD。我们提出了一种贪婪的算法,以最大化,近似保证为$(1-1/e)$。使用相同的模型,我们还介绍了“可行”态度的概念,目的是研究以高度态度获得态度的情景比最大化整个网络的态度更为重要。我们表明,与计算态度不同的计算可行态度的函数是非屈服的,但是是\ emph {大约subsodular}。我们提出近似算法,以最大化网络中的可行态度。我们通过实验评估了我们的算法,并研究了网络中节点态度的经验特性,例如高态度节点的空间和价值分布。

Influence diffusion has been central to the study of propagation of information in social networks, where influence is typically modeled as a binary property of entities: influenced or not influenced. We introduce the notion of attitude, which, as described in social psychology, is the degree by which an entity is influenced by the information. We present an information diffusion model that quantifies the degree of influence, i.e., attitude of individuals, in a social network. With this model, we formulate and study attitude maximization problem. We prove that the function for computing attitude is monotonic and sub-modular, and the attitude maximization problem is NP-Hard. We present a greedy algorithm for maximization with an approximation guarantee of $(1-1/e)$. Using the same model, we also introduce the notion of "actionable" attitude with the aim to study the scenarios where attaining individuals with high attitude is objectively more important than maximizing the attitude of the entire network. We show that the function for computing actionable attitude, unlike that for computing attitude, is non-submodular and however is \emph{approximately submodular}. We present approximation algorithm for maximizing actionable attitude in a network. We experimentally evaluated our algorithms and study empirical properties of the attitude of nodes in network such as spatial and value distribution of high attitude nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源